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ABSTRACT

Networks are today a critical infrastructure. Their resilience against
attacks is thus crucial. Protecting networks requires a comprehen-
sive security life-cycle and the deployment of different protection
techniques. To make defenses more effective, recent solutions lever-
age Al techniques. In this paper, we discuss Al-based protection
techniques, according to a security life-cycle consisting of several
phases: (i) Prepare; (ii) Monitor and Diagnose; and (iii) React, Re-
covery and Fix. For each phase, we discuss relevant Al techniques,
initial approaches, and research directions.
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1 INTRODUCTION

Networking has seen explosive growth and continuous evolution
over the past decade, especially in the area of mobile communica-
tions. Fourth Generation Long Term Evolution (4G LTE) cellular
technology has increased the bandwidth available for mobile de-
vices, in essence, delivering broadband speeds to these devices.
5G New Radio (NR) is further enhancing the transmission speeds
and cell capacity, as well as, reducing latency through the use of
different radio technologies and is expected to provide Internet
connections that are an order of magnitude faster than 4G LTE.
Technology continues to advance rapidly, however, and the next
generation, 6G, is already being envisioned. 6G will make possible
a wide range of powerful, new applications including holographic
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telepresence, telehealth, remote education, ubiquitous robotics and
autonomous vehicles, smart cities and communities, Internet of
things and of biothings, nanonetworks [27], and Industry 4.0, some-
times referred to as the Fourth Industrial Revolution, to name but a
few [7, 8, 19, 24]. The advances we will see start at the hardware
level and extend all the way to the top of the software “stack” [3].
Some of these advances will reduce power consumption, such as
free-space optical communication [6] for indoor use, and multiple-
access techniques able to scale up in scenarios in which large num-
bers of devices try to communicate with the same base station
using a low duty cycle [27]. Also application-domain-specific pro-
cessors are being developed that approach ASIC efficiency, but are
relatively flexible [3]. These more flexible processors will enable
powerful and efficient software-defined radios (SDRs), which will
change how spectrum is used. In addition the development and de-
ployment of software defined networks (SDN) and virtualization of
network functions have enhanced the flexibility and customization
of networks for different applications and reduced costs due to the
use of cloud systems.

However, because all activities we may think of depend on net-
work infrastructure, we can expect that attacks to these infrastruc-
tures will not longer be limited to simple (albeit significantly harm-
ful) discrete events [5], such as a distributed denial-of-service attack
against a portion of a network. Rather we can expect stealthy, persis-
tent, and sophisticated activities aiming at establishing a foothold in
core networks and maintaining such foothold to carry out massive
disruption operations or sophisticated data gathering operations.
Network security is thus critical. Many defense techniques and se-
curity practices have been proposed for network security. However
the increasing complexity of network infrastructure makes their
security extremely challenging.

We believe that reasoning about and addressing network se-
curity requires a security foundation for network protocols and
comprehensive security life-cycle framework. The life-cycle we
focus on consists of three main phases: (1) Prepare - it is at the core
of security. It basically makes sure that the network system is best
prepared to withstand attacks, failures, etc. (2) Monitor and diagnose
- as even the best “prepared” network system can still be breached,
monitoring activities are critical in order to detect attacks or anom-
alies that may be indicative of attacks. These attacks/anomalies
have to be analyzed to gather information about the root causes,
steps of attacks, etc. (3) React, recover and fix - once a diagnosis is
obtained, actions have to be executed to ensure that the network
system continue working, perhaps with reduced functions. These
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three phases are continuously executed and depending on the situa-
tion may even run in parallel. For example, once attacks/anomalies
are diagnosed, the prepare phase is executed again to undertake
activities such as patching vulnerabilities - exploited by the attacks,
changing permissions, etc., while at the same time activities are
executed to contain the attacks/manage the anomalies.

In order to devise more effective defenses, a recent trend is to
leverage Al techniques, which are becoming more feasible with re-
cent advances in Al combined with big data collection and analysis
capabilities. A major problem is, however, that the application of
Al techniques to networks is not trivial. For example, if one would
like to apply reinforcement learning to secure a network, one has
to understand how to properly design reward functions. At the
same time, the use of Al techniques for securing networks offers
interesting research directions. The goal of this paper is to discuss
Al opportunities and challenges for network security and present
some of our initial results.

The paper is organized as follows. In Section 2 we discuss rele-
vant Al techniques relevant for the secure foundations of network
protocols and for the security life-cycle; for each such technique
we discuss research opportunities. In Section 3 we present a short
overview of some of our work. Finally, in Section 4 we outline a
few concluding remarks.

2 AI TECHNIQUES - RESEARCH DIRECTIONS
2.1 Secure foundations for Networks

Next-generation networks will have to coordinate communication,
computation, caching and control (4C). Therefore, a critical com-
ponent of the network fabric is represented by the 4C protocols.
It is critical that these protocols do not have vulnerabilities that
can be exploited by attackers. We thus need systematic approaches
supporting comprehensive analyses of those protocols. Such anal-
yses must cover both the specifications of the protocols, which
when available are often expressed in natural language, and their
implementations.

Well known analysis frameworks, based on formal methods, have
been designed by Hussain et al. to analyze the 3GPP natural lan-
guage specifications of the 4G LTE [10] and the 5G protocols [11].
However such methodologies require as input formal specifications,
such as expressed by finite state machines (FSMs) of the analyzed
protocols, and the properties to be verified against the specifications.
Designing approaches for the (semi-) automatic generation of such
specifications and the identification of properties is challenging.
However this is an area where Al techniques, properly extended
and/or combined with other non-Al techniques, can applied. Exam-
ples of such applications include:

e Extraction of some formal (semi-formal) specifications from
natural language descriptions of these protocols and properties
to be verified. Examples of these specifications are the ones
provided by standardization bodies. AT opportunity: Using
natural language processing (NLP) techniques for the extrac-
tion of the specifications and the properties. AI challenges:
(i) Conventional NLP mining techniques are not suitable as
standardization documents are very long, convoluted and
with many cross-references. We need specialized NLP min-
ing techniques. (ii) NLP mining techniques focus mainly on
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applications, such as sentiment analysis. In our context, the
results of the NLP mining have to be a formal specification,
for example expressed as a set of FSMs. We need a new gen-
eration of NLP mining able to provide outputs structured
according to formats required for formal analyses.

o Verification of large scale implementations of protocols. When
applying frameworks, like the ones proposed in [10] and
[11], to large code bases a major challenge is the extraction
of FSMs from the code. It is clear that a manual approach
is not scalable. To address such an issue a recent approach
leverages the functional conformance testing frameworks
developed by protocol standardization bodies and/or com-
mercial test-case developers [13] combined with code in-
strumentation. However, such an approach is not applicable
when the source code is not available and/or when there is
no suitable testing framework. AT opportunity: (i) Using
symbolic learning techniques to learn FSMs from execution
traces. (ii) Using machine learning (ML) techniques, com-
bined with techniques such as symbolic execution, to reduce
human efforts in generating proper abstractions from proto-
col implementations. AI challenges: So far, no approaches
have been proposed addressing (i) and (ii). The challenge is
to understand which Al techniques or combination of these
can be combined/extended to address these challenges.

In addition to methodologies, like LTEInspector and 5Greasoner,
focusing on logical vulnerabilities, other methodologies are avail-
able for detecting low level vulnerabilities, such as the memory
ones. A popular category of methodologies is based on fuzzing [20].
A critical issue in the use of fuzzing is code coverage and solutions
have been recently proposed using Al techniques [1, 21]. However,
this is an area where more research is required.

2.2 Security Life-Cycle

As we have mentioned, we consider a network security life-cycle
consisting of three phases continuously repeating: (a) prepare; (a)
monitor and diagnose; (c) react, recover and fix. Those phases are
executed across the different layers/components/subsystems of the
network. They are context and situation dependent (e.g., certain
situations may require compliance with strict real-time require-
ments). They are repeated because networks are dynamic and thus
security has to adapt accordingly. Each phase requires specific ac-
tivities, some of which can be supported/enhanced by the use of
Al techniques (see Figure 1 for a summary). In what follows, we
discuss for each phase relevant Al techniques and challenges in the
application of these techniques.

2.2.1 Prepare Phase. For this phase critical activities include:

o Configuring security appliances, such as firewalls, and spec-
ifying security policies. These policies will be increasingly
attribute-based, that is, expressed as conditions against security-
relevant properties of entities. Coming up with these con-
figurations and policies is difficult. AT opportunity: Using
Al for learning these configurations and policies. AI chal-
lenges: (i) These configurations and policies often need to
be expressed in symbolic form (e.g., as rules); thus, we may
need to integrate symbolic learning with non-symbolic learn-
ing. (ii) Learning those configurations and policies requires
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Figure 1: AI Techniques for Each Phase of the Network Security Life-cycle

training data; an issue is how to get these data. An approach
is to use transfer learning techniques by which to adapt rules
learned in one context for use in another. Transfer learning
has been explored for non-symbolic learning and we need to
design transfer learning techniques for symbolic learning.
e Ensuring that “network programs” are correct and, if not, auto-
matically patching them. Techniques, like fuzzing techniques,
are widely used to identify vulnerabilities in code. However,
these techniques have many limitations, such as being unable
to identify logical vulnerabilities and also coverage issues. Al
opportunity: Using Al techniques for enhancing fuzzing;
using Al combined with techniques, such as symbolic execu-
tion, to abstract code into high level representations suitable
for formal method analysis; using AI to automatically re-
pair network program code. AI Challenges: (i) Identifying
which Al technique, or combination techniques, is more suit-
able for those tasks. (ii) Designing approaches for generating
training data and techniques for learning with few data.

2.2.2  Monitor and Diagnose Phase. For this phase critical activities
include:

e Continuously monitoring the network to detect anomalies at
different layers/components that can be indicative of potential
attacks. Al opportunity: This is an area where machine
learning techniques have been used. However, such tech-
niques need to be extended to deal with: (i) large-scale com-
plex systems; (ii) detection of anomalies in complex phe-
nomena (e.g., finding anomalies in the physical layer in
ultra-dense cells) in rapidly changing environments. Al chal-
lenges: (i) How to use Al for learning “behavior models” of
physical layers that can be used as baselines for anomaly
detection. (ii) How to support ultra-fast federated learning
combining information from different local ML models. (iii)
How to continuously adapt and evolve ML models.

o Detecting entities (e.g., IoT devices, users, applications) present
in the network. This is challenging for dynamic complex envi-
ronments but it is critical for security - to detect for example
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the presence of un-authorized devices in a certain area. Al
opportunities: Using ML techniques for multi-dimensional
fingerprinting of entities to be able to infer their presence
and their characteristics (such as communication protocols
they use) and also relational features (e.g., which entity com-
municates with which other entity). AI challenges: How to
quickly identify and classify entities based on their own char-
acteristics and their communication patterns (both physical
and logical); perhaps the use of multi-dimensional embed-
ding techniques could help.

e Analyzing information reported by monitors. Such analysis

should also based on domain knowledge (e.g., in a single hop
network, a black hole attack cannot happen [15]) about the
current status of the network portion of interest, etc. The goal
is to assess whether an anomaly or a problem, for example a
node not responding, is due to an attack and if so diagnose
the attack (e.g. understand the type of attack, the steps done
by the attacker etc.), and possibly predict the next steps of
the attacker. This is quite challenging and would require
combining different techniques and identifying suitable pro-
cesses to follow. AI opportunity: Using causal reasoning
techniques to determine the actions/states that have resulted
in the anomaly/problem. If the anomaly/problem is due to
an attack, using causal reasoning techniques to determine
the steps that the attacker has followed and using predic-
tion techniques to determine which the next steps would be.
Al challenges: (i) Information collected to diagnose anom-
alies/problems may be uncertain; therefore, multiple possible
root causes and sequences of attack steps may be identified
and one would need to associate some confidence levels to
the various possibilities. (ii) Prediction techniques must be
developed for complex processes involving adversarial par-
ties. (iii) Both (i) and (ii) need to be executed very fast as
network statuses continuously change and thus a diagnosis
executed much later may be less accurate; also, for the react
phase, a quick and correct diagnosis is critical.
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2.2.3  React, Recover and Fix Phase. For this phase critical activities
include:

e Deciding actions to block the attack. Such decisions must be
based on the security goal (for example minimize data losses,
do not disrupt certain critical communications and applica-
tions), and the anticipated steps of the attack (if such knowl-
edge is available). AI opportunity: Using reinforcement
learning (RL) techniques [26] to decide actions to contain
the attack. AI challenges: (i) How to quickly train RL agents
- perhaps transfer learning techniques can be used. (ii) How
to deal with dynamic changes in the reward functions, for
example, when the strategy to contain the attack may have
to dynamically change. (iii) How to deal with very large state
spaces.

o Deciding actions to bring the system back to its “normal be-
havior”. Such actions may include using auxiliary resources
and backups, and shifting activities to portions of the system
not affected by the attack. This is a complex process which is
application dependent. AI opportunity: Using sequential
decision processes such as the ones based on RL. AI chal-
lenges: (i) How to include domain knowledge in RL systems;
approaches may include constraining the exploration and/or
properly formulating the reward function. (ii) Formulating
reward functions may be complex; we need approaches to
determine when a reward function is not the correct one and
automatically modify it.

Permanently removing vulnerabilities/mis-configurations ex-

ploited by attacks. This activity loops back to the prepare

phase with additional knowledge gained by the attacks. AI
opportunity: Using Al for forensic processes and postmortem
analyses. AI Challenges: These analyses need to be special-
ized the specific network “planes” (e.g., user plane, data plane,
control plane, management plane) and may require identi-
fying suitable specific Al techniques and possibly enhance
these.

3 OVERVIEW OF RECENT RESEARCH
PROJECTS

We now present an overview of some initial research efforts along
the research directions discussed in the previous sections.

3.1 Learning Access Control Rules from Data

Access control is gaining relevance for enhancing network security
by restricting accesses to networks (or portion of them). It is espe-
cially critical in the context of zero-trust architecture (ZTA) [2]. ZTA
has been introduced as a fine-grained defense approach paradigm
shifting defenses from static, network-based perimeters to users,
assets, and resources [18]. It assumes that no entities outside and
inside the protected system can be trusted and therefore requires
articulated and high-coverage deployment of access control.
However, because ZTA requires fine-grained access controls, we
can expect that huge numbers of access control rules would have
to be generated. These rules will likely be attribute based, that is,
based on properties of subjects, protected resources, and contexts.
Therefore a critical issue is the generation of these rules. It is clear
that a manual approach to generate such rules is not feasible. An

102

Bertino and Karim

interesting direction to address such an issue is to use Al techniques
to learn rules from data.

One such approach, the Polisma framework [12], has been re-
cently designed to learn attribute-based access control rules from
logs of past decisions. An important requirement in the design of
Polisma has been that the results of the learning process be ex-
pressed in symbolic form, that is, as a set of rules so that these
rules can be directly provided as input to access control enforce-
ment engines and other security appliances, such as firewalls. It is
important to also mention that in addition to logs of data on past
access control decisions, one may have available other information,
such directories and organizational charts. It is critical that these
additional resources, if available, be also used. In addition, the rules
should be of “good quality” [4].

To address such requirements, Polisma includes several steps
(see Figure 2). The first step uses the well known association rule
mining technique to extract an initial set of access control rules.
However, these initial rules are often overfitted and unable to cover
requests for which no past decisions are present in the log. The
second step addresses such issue by generalizing the initial set of
rules; generalization however has to be careful as generalizing too
much may lead to very permissive rules. Therefore Polisma adopts
a very careful generalization strategy that aims at the minimal pos-
sible generalization. Such a strategy has two variants, depending on
whether additional information is available from organizational di-
rectories and charts. Once the rules have been properly generalized,
Polisma executes a third step to adds some negative rules; this step
is only significant if the considered access control model supports
both permit and deny rules. Finally, in order to improve the com-
pleteness of the learned rule set, Polisma applies a ML classifier on
log requests not covered by the learned set of rules. Then Polisma
uses the result of the classification to generate data concerning the
uncovered requests and generates additional rules in an “ad-hoc”
manner. Polisma has been evaluated using two datasets (one real
and the other synthetic). Experimental results show that Polisma is
able to generate rules that accurately control access requests and
outperforms existing approaches. The experimental results also
show that after the first step the accuracy is low and steps 2 and 4
are instrumental in greatly increasing the accuracy.

Even though Polisma has been designed for controlling accesses
to resources such as files, one interesting research direction is its
use for generating access control rules for networks by taking
advantages of logs of messages exchanged in networks.

3.2 Transfer Learning Techniques for Training
Network Intrusion Detection Systems

Deep learning (DL) techniques have been shown to be highly ef-
fective for assisting network intrusion detection systems (NIDSs).
Training DL classification models, however, requires vast amounts
of labeled data which is often expensive and time-consuming to
collect. Also, DL models trained using data from one type of net-
work may not be used to detect attacks on other types of network
or identify new families of attacks discovered over time.

An approach to address such drawbacks has been proposed
by Singla et al. [22] based on transfer learning. Transfer learning
refers to adapting a model learned in one domain, referred to as
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Figure 2: Learning Pipeline for Access Control Rules from [12]
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Figure 3: GAN architecture for adversarial domain adaptation from [22]. The GAN is trained to minimize the class prediction
and domain prediction loss. The adversarial DA process outputs the generator as a classifier for the target dataset.

source domain for use in other domain, referred to as target domain.
Transfer learning is particularly useful when the target domain has
a small number of labeled data and thus using these data would not
allow one to train an accurate model.

The approach by Singla et al. uses a domain adaptation (DA)
technique based on a generative adversarial networks (GAN). The
GAN basically creates a domain-invariant mapping of the source
and target datasets. The GAN-based DA technique consists of two
main components, namely a generator and a discriminator (see Fig-
ure 3). The goal of the generator is to take samples from the source
and target datasets and convert them into a domain-invariant repre-
sentation to fool the discriminator into misclassifying the generated
representations. The mapping is also used as an input to a classifier
which predicts which class the sample belongs to. The discrimina-
tor’s goal is to identify whether the representation provided by the
generator belongs to the source or the target dataset. The generator
also has the additional goal of being able to distinguish between the
classes on the source and target data distributions. The generator
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and the discriminator are trained simultaneously to get better at
their respective tasks. The final goal is to minimize both the domain
prediction and the class prediction loss. Once the training process
is completed, the adversarial DA process outputs the generator as
a classifier for the target dataset. We refer the reader to [22] for de-
tails on the loss functions used by the generator and discriminator
and the training algorithm.

The GAN-based DA approach has been evaluated on two well
know datasets used for NIDSs evaluation, that is, the KDD-CUP99 [14]
and the UNSW-NB15 dataset [16]. It is important to mention that
even though these datasets both deal with network attacks, they
have some different features. However, the experimental results
show that even when dealing with source and target datasets with
some different features, the GAN-based DA approach is able to
train an accurate target model even with few labeled target data.

Those results are promising. However there are some open in-
teresting research directions. The first direction is related to the
privacy of the source dataset, in that the GAN-based DA approach
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requires that the source dataset be available to the party perform-
ing the transfer learning. Such a party in most cases is a party in
the target domain. Therefore approaches must be investigated to
ensure the privacy of the source dataset in the TL process. Another
possibility is to perform the TL process in a cloud, in which case
the privacy of both the source and target datasets must be ensured.
The second direction is related to transfer learning processes using
multiple source domains to train the target model. As more datasets
and training models become available, it is interesting to take ad-
vantage of such resources to further reduce the numbers of data
required to train a model at a target domain. However, there are
issues to investigate, including modifications required to the GAN
architecture, shown in Figure 3, approaches to determine which
source datasets are actually beneficial for a specific target domain,
and how to deal with the case in which the target domain has only
unlabeled data.

3.3 Security-Driven Reinforcement Learning
for Software Defined Networks

The control plane is a component of software-defined networks
(SDN5s) to which Al techniques have been applied. The goal is to
make network controllers “smarter” in taking critical decisions
related to traffic engineering, such as how to maximize quality of
service.

As discussed by Mudgerikar et al. [17], even though ML tech-
niques can model complexity, they need sufficient training datasets,
which may be difficult to gather for large scale networks with a
diversity of traffic behavior. RL, on the other hand, learns optimal
policies online, through explorations, based on the system state
using a model-free approach. These policies are more likely to trans-
fer over to new situations and contexts, and these characteristics
make them more suitable for network control. Therefore, among
the various Al techniques, RL [26] has been proposed for various
key applications, including routing [23], traffic rate control [9] and
load balancing [25]. However applications of RL to network control
have not considered security; it is critical that achieving a given
optimization goal, such as minimizing latency, is not at the expense
of security. A recent approach by Mudgerikar et al. [17], focus-
ing on intelligent rate control, addresses such a requirement by
constraining explorations based on security policies. Those secu-
rity policies are learnt in a semi-supervised manner in the form
of ‘partial attack signatures’, learned by using a deep q-network
from packet captures of an IDS dataset. They are then encoded
in the objective function of the RL based optimization framework.
Experimental results show that such an approach is effective. There
is however more work to be done including extensions to such
a security-constrained approach for other network control func-
tions and its integration with open source SDN software. Also its
scalability and robustness need to be investigated.

4 CONCLUSIONS

In this paper we have discussed a few research directions con-
cerning the application of Al techniques to network security and
presented a short overview of some of our related projects. It is im-
portant to emphasize that, unlike many other application domains,
networks are large scale complex dynamic systems, with many
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different stakeholders, and therefore a successful application of Al
requires the combination of several Al techniques and models. Also
those techniques and models must be very efficient in providing
recommendations, decisions, classification results, and predictions,
and need to be robust against attacks.

ACKNOWLEDGMENTS

The work reported in this paper has been funded by NSF under
Grants 1IS-2112471 and DGE-2114680.

REFERENCES

[1] Mansour Ahmadi, Reza Mirzazade farkhani, Ryan Williams, and Long Lu. 2021.
Finding Bugs Using Your Own Code: Detecting Functionally-similar yet Incon-
sistent Code. In Proceedings of the 30th USENIX Security Symposium (USENIX
Security’21).

Elisa Bertino. 2021. Zero Trust Architecture: Does It Help? IEEE Security &
Privacy 19, 5 (2021).

Elisa Bertino, Daniel Bliss, Daniel Lopresti, Larry Peterson, and Henning
Schulzrinne. [n. d.]. Computing Research Challenges in Next Generation Wireless
Networking - A Computing Community Consortium (CCC) Quadrennial Paper.
https://arxiv.org/ftp/arxiv/papers/2101/2101.01279.pdf.

Elisa Bertino, Amani A. Jabal, Seraphin Calo, Dinesh Verma, and Christopher
Williams. 2018. The Challenge of Access Control Policies Quality. ACM Journal
on Data and Information Quality 10, 2 (2018).

John Brtis and Michael Mcevilley. [n.d.]. Systems Engineering for Resilience.
The MITRE Corporation: Bedford, MA, 2013.

Klaus David and Hendrik Berndt. 2018. 6G Vision and Requirements: Is There
Any Need for Beyond 5G? IEEE Vehicular Technology Magazine 13, 3 (2018),
72-80.

Nate Foster, Nick McKeown, Guru Rexford, Jennifer Parulkar, Larry Peterson,
and Oguz Sunay. 2020. Using Deep Programmability to Put Network Owners in
Control. ACM SIGCOMM Computer Communication Review 50, 4 (2020).

Marco Giordani, Michele Polese, Marco Mezzavilla, Sandeep Rangan, and Michele
Zorzi. 2020. Towards 6G Networks: Use Cases and Technologies. IEEE Commu-
nications Magazine 58, 3 (2020).

Xiaohong Huang, Tingting Yuan, Guanhua Qiao, and Yizhi Ren. 2018. Deep rein-
forcement learning for multimedia traffic control in software defined networking.
IEEE Network 32, 6 (2018), 35-41.

Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. [n.d.].
LTEInspector: A Systematic Approach for Adversarial Testing of 4G LTE. In
Network and Distributed Systems Security (NDSS) Symposium 2018, San Diego, CA,
USA, February 18-21, 2018.

Syed Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and Elisa
Bertino. [n.d.]. 5GReasoner: A Property-Directed Security and Privacy Analysis
Framework for 5G Cellular Network Protocol. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019.

Amani Jabal A., Elisa Bertino, Jorge Lobo, Mark Law, Alessandra Russo, Seraphin
Calo, and Dinesh Verma. [n. d.]. Polisma - A Framework for Learning Attribute-
Based Access Control Policies. In Computer Security - ESORICS 2020 - 25th Eu-
ropean Symposium on Research in Computer Security, ESORICS 2020, Guildford,
UK, September 14-18, 2020, Proceedings, Part I. Lecture Notes in Computer Science
12308, Springer 2020.

Imtiaz Karim, Hussain Syed, and Elisa Bertino. [n. d.]. ProChecker: An Automated
Security and Privacy Analysis Framework for 4G LTE Protocol Implementations.
In Proceedings of the 41st IEEE International Conference on Distributed Computing
Systems, ICDCS2021, July 07-10, 2021.

MIT Lincoln Labs. 1999. KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/
kddcup99/task.html

Daniele Midi, Antonino Rullo, Anand Mudgerikar, and Elisa Bertino. [n. d.]. Kalis
- A System for Knowledge-Driven Adaptable Intrusion Detection for the Internet
of Things. In Proceedings of the 37th IEEE International Conference on Distributed
Computing Systems, [CDCS2017, July 05-08, 2017.

Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set). In Military
Communications and Information Systems Conference (MilCIS), 2015. IEEE, 1-6.
Mudgerikar, Anand and Bertino, Elisa, and Lobo, Jorge and Verma, Dinesh. [n. d.].
A Security-Constrained Reinforcement Learning Framework for Software De-
fined Networks. In Proceedings of the IEEE International Conference on Communi-
cations, ICC2021, June 14-23, 2021.

NIST. [n.d.]. Zero trust architecture. [Online]. Available from: https://csrc.nist.
gov/publications/detail/sp/800-207/final.

—_
&,

[10

[11

[12

[13

[14

[15

(17

[18


http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://csrc.nist.gov/publications/detail/sp/800-207/final

Al-powered Network Security: Approaches and Research Directions

[19] University of Oulu. [n.d.]. Key Drivers and Research Challenges for 6G Ubiqui-
tous Wireless Intelligence. http://jultika.oulu.fi/files/isbn9789526223544.pdf.
[20] Mathias Payer. 2019. The Fuzzing Hype-Train: How Random Testing Triggers
Thousands of Crashes. IEEE Security & Privacy 17, 1 (2019).
[21] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. [n. d.]. Quickly
generating diverse valid test inputs with reinforcement learning. In Proceedings
of the 42nd International Conference on Software Engineering, ICSE2021, June 27-
July 19, 2021.
Ankusu Singla, Elisa Bertino, and Dinesh Verma. [n.d.]. Preparing Network
Intrusion Detection Deep Learning Models with Minimal Data Using Adversarial
Domain Adaptation. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, ASIACCS 20, Taipei, Taiwan, October 5-9, 2020.
Giorgio Stampa, Marta Arias, David Sanchez-Charles, Victor Muntés-Mulero,
and Albert Cabellos. 2017. A deep-reinforcement learning approach for software-
defined networking routing optimization. arXiv preprint arXiv:1709.07080 (2017).

[22

~
&

8th NSysS 2021, December 21-23, 2021, Cox’s Bazar, Bangladesh

[24] C. Emilio Strinati, Sergio Barbarossa, Jose Luis Gonzalez-Jimenez, Dimitri

Ktenas, Nicolas Cassiau, and Cedric Dehos. [n.d.]. 6G: The next frontier.
https://https://arxiv.org/abs/1901.03239.

Penghao Sun, Zehua Guo, Gang Wang, Julong Lan, and Yuxiang Hu. 2020. MAR-
VEL: Enabling controller load balancing in software-defined networks with multi-
agent reinforcement learning. Computer Networks (2020), 107230.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

Tataria, Harsh and Shafi, Mansoor and Molish, Andreas F. and Dohler, Mischa
and Sjoland, Henrik, and Tufvesson, Fredrik. 2021. 6G Wireless Systems: Vision,
Requirements, Challenges, Insights, and Opportunities. Proceedings of IEEE 109,
7 (2021), 1166-1199.



	Abstract
	1 Introduction
	2 AI Techniques - Research Directions
	2.1 Secure foundations for Networks
	2.2 Security Life-Cycle

	3 Overview of Recent Research Projects
	3.1 Learning Access Control Rules from Data
	3.2 Transfer Learning Techniques for Training Network Intrusion Detection Systems
	3.3 Security-Driven Reinforcement Learning for Software Defined Networks

	4 Conclusions
	Acknowledgments
	References

