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A B S T R A C T

We address “heterogeneous coverage” in visual sensor networks where coverage requirements of some randomly
deployed targets vary from target to target. The main objective is to maximize the coverage of all the targets
to achieve their respective coverage requirement by activating minimal sensors. The problem can be viewed
as an interesting variation of the classical Max-Min problem (i.e., Maximum Coverage with Minimum Sensors
(MCMS)). Therefore, we study the existing Integer Linear Programming (ILP) formulation for single and k-
coverage MCMS problem in the state-of-the-art and modify them to solve the heterogeneous coverage problem.
We also propose a novel Integer Quadratic Programming (IQP) formulation that minimizes the Euclidean distance
between the achieved and the required coverage vectors. Both ILP and IQP give exact solution when the problem
is solvable but as they are non-scalable due to their computational complexity, we devise a Sensor Oriented
Greedy Algorithm (SOGA) that approximates the formulations. For under-provisioned networks where there
exist insufficient number of sensors to meet the coverage requirements, we propose prioritized IQP and reduced-
variance IQP formulations to capture prioritized and group wise balanced coverage respectively. Moreover,
we develop greedy heuristics to tackle under provisioned networks. Extensive evaluations based on simulation
illustrate the efficiency and efficacy of the proposed formulations and heuristics under various network settings.
Additionally, we compare our methodologies and algorithm with two state-of-the-art algorithms available for
target coverage and show that our methodologies and algorithm substantially outperform both the algorithms.

1. Introduction

A visual sensor network (VSN) consists of a large number of visual
sensors having local image processing, communication, and storage
capabilities that monitor a set of targets within an area of interest.
The sensors–also known as smart cameras–are capable of self-controlling
their orientation and range based on environmental conditions. Visual
Sensor Networks have received appreciable attention of researchers due
to their applicability in a wide number of significant real-life scenar-
ios.

Visual sensors can be either omni-directional or directional. A sensor
can provide coverage to a target if the target is within the sensing region
of the sensor. Omni-directional visual sensors can provide coverage to
all targets placed within its sensing region at the same time, whereas
directional visual sensors can provide coverage only in a fixed direction
at a time.
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1.1. Deployment and application of visual sensor networks

A visual sensor network can be deployed in two ways:–(i) deter-
ministic placement, and (ii) random scattering. In deterministic place-
ment, the visual sensors can be suitably positioned to meet the cov-
erage requirements. However, this is only possible in a small or
medium-scale network where only a specified set of sensor locations
is available and/or the topography is completely known. But in real-
ity, deployment could be in large-scale containing thousands of sen-
sors possibly in an inaccessible terrain (such as in battlefield) where
random scattering is the most convenient and (perhaps) the only
option.

The real world scenarios of the large-scale randomly deployed
VSNs include surveillance system, target tracking, environment mon-
itoring, traffic controlling, and battlefield monitoring, to name a
few.
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1.2. Necessity of fault tolerance in visual sensor network

The basic form of Maximum Coverage with Minimum Sensor
(MCMS) problem in a VSN deals with covering maximum targets using
minimum sensors. Activating minimum possible sensors is necessary
for building cost-effective and energy-efficient networks. However, in
real environment, a target may lose its coverage due to various reasons
such as power drainage of the sensors, malfunctioning sensors, sudden
appearance of obstacle(s) along the covering pan of a sensor etc. So,
besides coverage we also need to deliberately introduce fault tolerance
by covering each target with more than one sensor.

1.3. Practicality of heterogeneous coverage in visual sensor network

While providing fault tolerance one might envision a homogeneous
system where every target is covered equally. However, in reality we
may not need the same degree of fault tolerance for all of the targets
because all of them might not be of equal importance. For example, in
an educational institution, there are various places such as classrooms,
common rooms, laboratory rooms, office rooms, teachers’ rooms, cor-
ridors etc. All places are not of equal importance. Therefore, while
building a surveillance system for such an educational institution we
may need different degree of coverage for different places. Perhaps one
need to be more cautious with monitoring a laboratory room (which is
mainly a private space installed with costly scientific equipments) than
monitoring a corridor (which is more like a public place). So, we may
want to assign more sensors for covering the laboratory room than for
covering the corridor. Another important motivating scenario is deploy-
ment of visual sensors in battlefield monitoring. In a battlefield, critical
targets like bastions or headquarters require greater number of visual
sensors than comparatively less important targets like small barracks.
On the contrary, assigning the same number of additional sensors for
all the targets in such scenarios may introduce too many redundant sen-
sors substantially increasing the network installation and maintenance
cost. Thus, we end up with having heterogeneous coverage requirement
problem of targets in such kind of scenarios.

1.4. Types of visual sensor networks

We are concerned about two kinds of visual sensor networks:–(i)
Over-provisioned, and (ii) Under-provisioned. We call a system over-
provisioned if we have enough sensors to fulfill the coverage require-
ments of the targets, whereas, a system is under-provisioned otherwise.

1.5. Practicality of under-provisioned network

We face the problem of scarcity of sensors in real environment. We
need to focus on under-provisioned networks where there are insuffi-
cient number of sensors to ensure the heterogeneous coverage require-
ments or fault tolerance. Even a previously over-provisioned network
may become under-provisioned in course of time due to discovery of
some additional new targets but the number of sensors may remain the
same. Moreover sensors are costly. Thus under-provisioned networks
exist in real life. In that case we may assign coverage priorities; tar-
gets with higher coverage requirement should get higher coverage. Or
we may maintain a balanced coverage; targets with the same coverage
requirements would get more or less similar coverage.

All of these scenarios motivate us to investigate the heteroge-
neous coverage problem focusing on both over-provisioned and under-
provisioned networks.

1.6. Previous works and our contributions

In this section, we present the related works that are aligned with
our research. Also we point out the contributions of the paper that are
novel with respect to the existing works.

1.6.1. Previous works
There are two main categories of research for single coverage prob-

lem (i.e., each target requires only one sensor to get covered) in omni-
directional sensor setting. One thread of works deals with designing
online algorithm according to some off-duty eligibility rule and other
thread of works deals with designing offline algorithm. Under the first
thread of work (designing online algorithm), Tian and Nicolas (Tian and
Georganas, 2002) introduce the idea of “sponsored area” in designing
an off-duty eligibility rule to ensure complete coverage. Analysing inter-
section points by sensors, Wang et al. (2003) design an off-duty eligibil-
ity rule. Zhang and Hou (2005) developed Optimal Geographical Den-
sity Control (OGDC) algorithm for minimizing sensing-overlap. Under
the second thread of work, researchers design (offline) algorithms for
organizing sensor nodes in power-aware fashion. Megrian and Potkon-
jak (Meguerdichian and Potkonjak, 2003) present ILP formulations and
approaches to reduce energy consumption by sensor nodes while guar-
anteeing single coverage of all targets. Slijepcevic and Potkonjak (2001)
propose set k-cover problem where they maximize k which is the num-
ber of disjoint set covers; here a set cover refers to a set of sensor
nodes which can completely cover required area. The chosen sets will
be active successively along time. Adding bandwidth constraint with
disjoint set cover, Cheng et al. (2005) formulate minimum breach prob-
lem where sizes of set covers are bounded; they show that network
lifetime can be extended by additional bandwidth constraint at the cost
of coverage breach. Following disjoint set cover approach, Cardei et al.
(2005) improved network lifetime by using the same node in multiple
set covers. Zhao and Gurusamy (2008) consider the Connected Target
Coverage (CTC) problem with the goal of maximizing network lifetime.
The objective of their work is: scheduling the sensors in multiple sets
each of which can both maintain the connectivity among the sensors
and target coverage. Lu et al. (2015) study the Maximum Lifetime Cov-
erage Scheduling (MLCS) problem for WSNs, considering both data col-
lection and target coverage. In a survey Yetgin et al. (2017) present a
comprehensive discussion on network lifetime optimization in WSN.

There exists a good number of research works on k-coverage (i.e.,
each target needs to be covered by at least k sensors) (Yen et al.;
Ammari and Das, 2010; Hefeeda and Bagheri, 2007; Bejerano, 2008)
using omni-directional sensors. Yen et al. divide the deployment area
into circular sensing regions of fixed radius centered at each avail-
able sensors and perform k-coverage of those circular regions. Ammari
and Das (2010) address the k-coverage problem of wireless sensor net-
works in three dimensional space. Hefeeda and Bagheri (2007) solve
the k-coverage problem on dense networks. Bejerano (2008) works on
k-coverage problem in situation where the location of targets and sen-
sors is not known before. Notably, none of these works are directly
applicable for directional visual sensors.

Existing works in directional sensor networks, can be broadly classi-
fied into several categories. In one category, the coverage requirement
is homogeneous; each target requires to be covered by the same num-
ber of sensors. Under this category, Ai and Abouzeid (2006) formulate
the single coverage requirement (i.e., every target needs to be covered
by at least one sensor) as Maximum Coverage with Minimum Sensors
(MCMS) problem and devise the exact integer linear programming (ILP)
solution. They also provide greedy heuristics to approximate the opti-
mal formulation. Lu et al. (2014) study Maximum Directional Target
Coverage Problem (MDTCP). They mathematically formulate the prob-
lem as a Mixed Integer Linear Programming (MILP) and propose an
approximation algorithm. Cai et al. (2009) approach single coverage
problem in target-oriented way. They organize sensors in cover sets
and activate only one cover set at a time to increase network lifetime.
Zannat et al. (Zannat et al., 2016) study the single coverage problem
from target oriented approach. They provide greedy algorithm that pri-
oritize the targets that are less coverable. They also provide approxima-
tion bounds on existing and proposed heuristics. Our work differs from
Zannat et al. (2016) in many aspects: they are concerned with single
coverage whereas we deal with heterogeneous coverage, i.e., coverage
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requirements of targets differ from target to target. They do not formu-
late mathematical formulation, whereas we have precise ILP and IQP
formulations for solving heterogeneous coverage problem. Their greedy
algorithm is target-oriented, whereas ours is sensor-oriented. Fusco and
Gupta (2009) study the k-coverage with minimum sensors problem
where each target should be covered by at least k sensors. They present
greedy algorithm to tackle the k-coverage problem. Malek et al. (2016)
discuss the coverage imbalance in k-coverage problem. Especially in
under-provisioned networks where there are insufficient number of sen-
sors to provide k-coverage, their work provides balanced coverage. Our
work differs from Malek et al. (2016) in various aspects: their work
deals with k-coverage problem, i.e., each target needs to be covered by
at least k sensors, whereas our work deals with heterogeneous cover-
age problem, i.e., coverage requirement of targets differ from target to
target. Their work focuses on coverage imbalance problem in under-
provisioned network, whereas, our work deals with maximizing hetero-
geneous coverage in both over-provisioned and under-provisioned net-
work. Another stream of works (Wang et al., 2009; Yang et al., 2010;
Salleh et al., 2014; Razali et al., 2017; Sharmin et al., 2016, 2017) deals
with priority based target coverage in directional sensor networks. In
these works, each target has pre-assigned priority in the range from
0 to 1, the higher this value is, the higher the target is assigned prior-
ity. Wang et al. (2009) provide genetic algorithm for addressing priority
based target coverage in directional sensor networks. Yang et al. (2010)
use the idea of cover set to address priority based target coverage prob-
lem: a cover set can provide required priority for all targets and one
cover set will be activated at a time. They focus on maximizing net-
work lifetime in their work. Salleh et al. (2014) provide a new learning
automata based algorithm for priority based target coverage problem
in directional sensor networks. Razali et al. (2017) provide schedul-
ing algorithms for addressing priority based target coverage problem in
directional sensor network with adjustable sensing ranges. Sharmin et
al. (2016) devise scheduling algorithm to maximize coverage quality of
targets using minimum number of sensors. Sharmin et al. (2017) deal
with tradeoff between maximizing coverage quality of the targets and
maximizing network lifetime. These studies do not impose the neces-
sity for a specific number of sensors for each target. These studies use
“Coverage Quality Function” and exact number of sensors covering a
target may vary for different coverage quality functions. In our work the
fault tolerance aspect is more strongly addressed as we require specific
number of cameras to cover each target. In another category of works,
coverage requirements are heterogeneous, i.e., each target requires dif-
ferent coverages. In literature this is well known as target Q-coverage
(TQC) problem where, Q = (q1, q2, q3,… , qm) is a vector and qi is
the required coverage of ith target. Gu et al. (2009) discuss TQC prob-
lem with maximization of network lifetime for omni-directional sensors.
Their formulation chooses a set of sensors that satisfy the requirements
and optimize the network lifetime. Chaudhary and Pujari (2009) discuss
the TQC problem with maximization of network lifetime. However, in
both (Gu et al., 2009; Chaudhary and Pujari, 2009), sensors are omni-
directional. Li et al. (2012) modify the TQC problem for directional
sensors with the goal of maximizing network lifetime. They find a col-
lection of SDQ-covset (a set of sectors that satisfy the requirements) that
maximize the network lifetime with a given bound on service delay.
There is another thread of works related to heterogeneous coverage,
called differentiated coverage, where required coverage degree for an
area vary from area to area. Yan et al. (2003) address a differentiated
surveillance problem. They provide a scheduling protocol that deter-
mine the time slots for sensors to give the required coverage for the
grid points. Du and Lin (2005) provide another scheduling algorithm
for differentiated coverage with heterogeneous sensors. These works
basically deal with designing scheduling algorithms.

1.6.2. Our contributions
Although our work is aligned with Q-coverage and differentiated

coverage to some extent, there are significant differences. The major

differences with Q-coverage problem are as follows. Firstly, we math-
ematically formulate the problem as a variant of Maximum Coverage
with Minimum Sensors (MCMS) problem whereas in Q-coverage the
problem is formulated focusing on network lifetime. Secondly, formu-
lation in Q-coverage assumes all coverage patterns are already gener-
ated and it chooses the optimal one whereas, our formulations gener-
ate such patterns. Thirdly, in Q-coverage, due to large number of cov-
erage patterns, methods like column generation are followed (Gu et
al., 2009) whereas, we directly solve our formulations. With respect to
differentiated coverage, the differences are as follows. Firstly, in dif-
ferentiated coverage, there is no mathematical formulation whereas
we provide precise formulation of heterogeneous coverage as a vari-
ant of Maximum Coverage with Minimum Sensors (MCMS) problem.
Secondly, works on differentiated coverage basically deal with proto-
col design whereas, our work finds a sensor orientation using ILP, IQP
and greedy heuristics. Moreover, to the best of our knowledge, no works
either on Q-coverage or differentiated coverage provide special empha-
sis on under-provisioned network which is a quite reasonable scenario
in real life. In under provisioned network, as there is insufficient num-
ber of sensors to attain coverage requirements of the targets, we need to
provide best-effort to maximize the coverage of each target. For under-
provisioned networks, we propose priority IQP and reduced-variance
IQP formulations to capture prioritized and group wise balanced cover-
age respectively.

The major contributions of the paper are summarized below:

(i) We study the heterogeneous coverage as a variant of Maxi-
mum Coverage with Minimum Sensors (MCMS) problem where
coverage of each target should be maximized with mini-
mum number of sensors for both over-provisioned and under-
provisioned networks. We propose ILP and IQP formulations
for heterogeneous coverage. Especially for under-provisioned
networks, we propose two constraints: prioritized and group-
wise balanced coverage to achieve the coverage maximization
goal.

(ii) We derive an upper bound on the penalty coefficient of ILP for-
mulation which can be easily generalized for other formulations.

(iii) We provide prioritized Integer Quadratic Programming (pIQP)
and reduced-variance IQP formulations for under-provisioned
networks.

(vi) Also, we devise a greedy algorithm SOGA (Sensor Oriented
Greedy Algorithm) that gives near optimal solutions for the
above formulations.

(v) Additionally, we compare our methodologies and algorithm with
two state-of-the-art algorithms available for target coverage and
show that our methodologies and algorithm substantially outper-
form both the algorithms.

1.6.3. Organization of this paper
The paper is organized as follows. This section summarizes the

related works along the same research direction. Here we discuss about
the existing works that deal with either omni-directional or directional
sensors. In Section 2, we present the network model with relevant
parameters. Also we develop our problem statement with explanations.
Section 3 represents an Integer Linear Programming (ILP) approach
(and its explanation) to solve our problem. In Section 4 we develop
an Integer Quadratic Programming (IQP) approach to solve our prob-
lem. Section 5 discusses important modifications in our basic problem
statement for tackling under-provisioned network. Here we devise pri-
oritized IQP and reduced-variance IQP formulation to incorporate pri-
oritized coverage and group-wise balanced coverage respectively. In
Section 6, we represent a Sensor Oriented Greedy Algorithm (SOGA)
which is a heuristic to approximate the formulations. Here we use
different benefit functions to follow different formulations. Section 7
depicts different simulation results for various network settings. Here
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Table 1
A concise list of symbols.

Symbol Meaning

m number of targets
n number of sensors
q number of non-overlapping pans of a sensor
gt the tth target
si the ith sensor
kt coverage requirement of target gt
𝜓 t achieved coverage of target gt; maximum value is the

requirement, kt
𝛼t actual coverage of target gt; may exceed the requirement, kt
 ij a subset of targets, that are coverable by sensor si in pan pj

we compare the approaches and heuristics under some well-defined
metrics. Finally in Section 8, we draw our conclusions with a summary
of our important findings.

2. Preliminaries

In this section, we define our visual sensor network model with dif-
ferent parameters. Then we describe a testing method through which
the location of the targets can be determined. Finally, we define our
problem with a brief explanation. In Table 1 we present a concise list
of symbols used in the paper. Note that, for the first time reading, we
may skip this table without any trouble. The symbols are defined later,
in the relevant sections. This table is just for easy reference (Table 1).

2.1. Network model

A visual sensor network (VSN) consists of smart sensors (or, cam-
eras) which have some local image processing, communication and
storage capabilities. Unlike omni-directional sensors, these cameras are
directional in their field of view (FoV). FoV is the span of observable
area at any given direction by the camera. In VSN, sensors are usu-
ally Pan-Tilt-Zoom (PTZ) cameras, where the FoV is adjustable in (i)
horizontal direction (or pan), (ii) vertical direction (or tilt), and (iii)
depth-of-field (or zoom).

In our model, we assume a camera can move only in the horizontal
direction. Also its FoV is defined by its pan. We present the sensing area
or pan of a camera as a sector in a circle lying on a 2-dimensional plane
as shown in Fig. 1.

To formalize the different aspects of a camera node, we introduce
the following parameters (please refer to Fig. 1):

• (xi, yi): the location of the camera si in Cartesian coordinate system.
• 𝜃: Angle of View (AoV) or maximum sensing/coverage angle of a

camera in any direction.
• Rs: maximum coverage range of a camera beyond which it cannot

detect any target.
• ⃖⃖⃖⃗dij: a unit vector which passes through the middle of a pan, repre-

senting the orientation of camera si towards pan pj.
• ⃖⃖⃖⃗vit : a vector in the direction from camera si to target gt.

In our model we assume that cameras are homogeneous; each cam-
era has similar parameter values. Also we assume that each camera has
finite orientations or pans and the pans are disjoint. For example, in
Fig. 1, a camera with 𝜋

4 of FoV can choose one of the eight pans which
are mutually non-overlapping. The combination of all the pans generate
full circular view of a camera’s entire sensing region.

Our proposed approaches are Centralized. A sensor transmits data
(such as, which targets are in which pan) to its neighboring nodes, they
transmit to their neighboring nodes and in this way, the data ultimately
goes to the sink (or, central) node. After getting data from all the sen-
sors, algorithm for orientating the sensors is run in the sink node and
the results are sent back to all the sensors in the similar fashion.

Fig. 1. A directional sensor and its coverage parameters.

2.2. Target in which pan (TIWP) test

It is a testing scheme, through which we can verify whether a target
gt is coverable by a given sensor si or not. Also we can find the corre-
sponding pan in which the target belongs to. This test is similar to TIS
test described in Ai and Abouzeid (2006). The TIWP test for a sensor si
and target gt can be performed as follows:

• First we calculate the angle 𝜙it between camera orientation ⃖⃖⃖⃗dij of
pan pj and the target vector ⃖⃖⃖⃗vit ,

𝜙it = cos−1

(
⃖⃖⃖⃗vit .⃖⃖⃖⃗dij|⃖⃖⃖⃗vit ||⃖⃖⃖⃗dij|

)
(1)

• Then we check whether the target vector v⃗it falls within the FoV of
the camera si by checking the constraint, 𝜙it ≤

𝜃
2 ; another way to

perform this checking is to use the inner product,

⃖⃖⃖⃗vit .⃖⃖⃖⃗dij ≥ |⃖⃖⃖⃗vit| cos
(
𝜃
2

)
(2)

• Finally, we verify whether the target gt is within the sensing range
of the camera by checking, |⃖⃖⃖⃗vit | ≤ Rs.

If a target passes these steps, the result of the TIWP test is true, i.e,
the camera si covers the target gt in pan pj.

By performing TIWP tests on every pan pj of camera si and every
target gt, we can build a subset of targets  ij for each sensor si which
contains the targets that are coverable by sensor si in pan pj.

2.3. Problem formulation

We formally define the Heterogeneous Coverage of Targets (HCT)
problem as follows:

Given:

• a set of targets,  = {g1, g2, g3, . . ., gm} to be covered
• a tuple of positive integers,  = (k1, k2, k3, . . ., km), where kt is the

required coverage of target gt for all gt ∈ ; two targets gi and gj
are in the same coverage group if they have same coverage require-
ments, i.e., ki = kj

• a set of homogeneous cameras (or directional sensors),  =
{s1, s2, s3, . . ., sn}, each of which can be oriented in one of q pos-
sible disjoint pans
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Fig. 2. A simple illustration of solvable and unsolvable scenario. (a) A solvable scenario; the targets (a, b) have the requirements of (2,1) respectively. (b) An
unsolvable scenario; the targets (a, b, c) have the requirements of (2,1,1) respectively.

• a set of disjoint (or non-overlapping) pans,  = {p1, p2, p3, . . ., pq}
• a set of all possible (sensor, orientation) pairs is defined as,  ={(

si, pj
)|sensor si is activated on pan pj

}
.

Problem: Find a subset  of  such that, there is at most one pair for
a sensor in  and achieved coverage of each target gt gets maximized
under the condition that target gt is covered by at least kt sensors and
the total number of active sensors gets minimized.

2.4. Discussion on problem statement

The single coverage (or MCMS) problem which is a simplified ver-
sion of HCT is NP-hard (Ai and Abouzeid, 2006). The optimal solution
of k-coverage problem is NP-hard (Fusco and Gupta, 2009) too. Natu-
rally, the HCT problem is (at least) as hard as k-coverage problem.

We say a problem instance is solvable if at least one set of (sensor,
orientation) pairs exists to achieve all the coverage requirements. The
previously introduced two kinds of sensor systems, namely the over-
provisioned, and the under-provisioned systems can be redefined in terms
of solvability. We call a system over-provisioned if the problem instance
is usually solvable i.e., we assume to have enough sensors to fulfill the
coverage requirements of the targets, whereas, in under-provisioned
systems there do not exist enough sensors to meet the coverage require-
ments of the targets, i.e., the problem instance is unsolvable.

For example, consider the Fig. 2 (a). Here we have three sensors and
two targets, (a, b) with coverage requirements (2,1) respectively. The
problem is solvable and one of the possible solutions is presented by
the shaded pans of the sensors.

On the other hand, the scenario of Fig. 2 (b), represents an unsolv-
able problem. Here, targets (a, b, c) have the requirements of (2,1,1)
respectively. Clearly, the target c can not be covered by any sensor but
its requirement is 1.

If coverage requirements can not be met, we aim at achieving one of
the following two possibilities:– (i) achieve prioritized coverage, or (ii)
achieve groupwise balanced coverage.

In prioritized coverage, one can set priority to targets; the cover-
age of higher priority targets should be maximized although for other
targets, requirements may not be fulfilled. Usually, higher coverage
requirement of a target implicitly indicates its higher importance. On
the other hand, in group-wise balanced coverage, one can activate a set
of sensors that minimizes variances of achieved coverage within each
coverage group. The intuition behind this approach is, the targets with
the same coverage requirement should be covered by the same num-
ber of active sensors. Thus, within a coverage group achieved coverage
should have zero variance. In the following sections we present all dif-

ferent approaches to solve the HCT problem.

3. Linear programming approach to solve HCT problem

The motivation behind using linear programming method to solve
HCT problem is to maximize the total achieved coverages of all the tar-
gets and minimize the number of active sensors. This optimization task
can be captured by an Integer Linear Programming (ILP) formulation.
An ILP formulation to solve Maximum Coverage with Minimum Sensors
(MCMS) problem is explained in Ai and Abouzeid (2006). They formu-
late it to solve the single coverage requirement problem. Malek et al.
(2016) extend the ILP formulation for k-coverage requirement problem.

In this section we explain an ILP formulation to solve the HCT prob-
lem. Then we discuss some important aspects of this formulation.

3.1. ILP formulation

The parameters that we use for ILP formulation are:

• n: number of sensors
• m: number of targets
• q: number of non-overlapping pans of a sensor
• 𝛼t: an integer variable that counts actual coverage of target gt by the

sensors; the value of this variable may exceed the coverage require-
ment kt

• 𝜓 t: an integer variable that denotes achieved coverage of target gt by
the sensors; the maximum value of this variable is bounded by kt
(i.e. there is no extra benefit for more coverage than the require-
ment)

• 𝜒 ( i,j): a binary variable with value one when the sensor si is in ori-
entation pj and zero otherwise

• Iverson bracket: let P be a proposition, either true or false; then Iver-
son bracket is defined as:

[P] =
{

1, if P is true
0, otherwise.

(3)

Therefore, 𝛼t can be expressed as:

𝛼t =
n∑

i=1

q∑
j=1

[gt ∈  ij]𝜒(i,j) (4)

Now, the ILP formulation for HCT problem becomes,

maximize ∶
m∑

t=1
𝜓t − 𝜌

n∑
i=1

q∑
j=1
𝜒(i,j) (5)
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Fig. 3. Solutions produced by ILP and IQP for a scenario with 6 sensors and 6 targets. (a) Selection of pans by ILP (b) Selection of pans by IQP. A detailed analysis
is presented in Table 2.

subject to constraints:
𝛼t
n

≤ 𝜓t ≤ 𝛼t , ∀t = 1,2, . . .,m (6)

𝜓t = 0 or 1 or 2 or . . . or kt , ∀t = 1,2, . . .,m (7)

q∑
j=1
𝜒(i,j) ≤ 1, ∀i = 1,2, . . ., n (8)

𝜒(i,j) = 0 or 1, ∀i = 1,2, . . ., n,∀j = 1,2, . . ., q (9)

3.2. Explanation

The objective function in Eqn. (5) does two things: maximize
the total coverage and minimize the number of active sensors. Here
the number of active sensors is multiplied by a penalty coefficient
𝜌 (<1).

Eqn. (6) indicates if target gt gets covered or remains uncovered. If
a target gt gets no coverage by any sensor, then 𝛼t is zero and also 𝜓 t
is zero which conforms to the right inequality. If target gt gets covered
by one sensor (at least), then 𝛼t >0. As 𝛼t cannot exceed n, the fraction,
𝛼t
n (a real number) becomes less than one and 𝜓 t ≥1 which follows the

left inequality.
Eqn. (7) presents that the achieved coverage, 𝜓 t of target gt is

bounded by kt. That is if target gt gets covered by more than kt times, we
do not provide extra benefit for extra coverage exceeding kt. Note that,
there is a subtle difference between 𝜓 t and 𝛼t. 𝛼t denotes the actual cov-
erage; it may exceed the coverage requirement of target gt. For example,
let us consider two targets with coverage requirements (2,1) respec-
tively. Now, ILP may choose a solution with (3,2) actual coverages. But
there is no benefit to give more coverage than the requirement. So, in
this case, (𝜓1, 𝜓2) = (2,1) but, (𝛼1, 𝛼2) = (3,2) respectively.

Eqn. (8) represents that each directional sensor will be in a single
orientation at a time, if it is active.

3.3. Properties of ILP

One important aspect of ILP is that, it gives exact solution (or,
achieves the coverage requirement of each target) when the problem
is solvable. This characteristic of ILP can be proved easily from the con-
straint in Eqn. (7). Here 𝜓 t has maximum value kt for each target gt. If

the equality is possible then ILP will choose it to maximize the objective
function of Eqn. (5).

When the problem is not solvable, ILP gives an upper bound on the
total achieved coverage as ILP maximizes the total coverage according
to Eqn. (5). In summary, when the problem is solvable, ILP will max-
imize the coverage of each target and find the exact solution. But if
the problem is not solvable, there is no guarantee that ILP will maxi-
mize the coverage of each target. Instead it will provide maximum total
coverage.

For example, consider the scenario of Fig. 3(a). Here the six targets
a, b, c, d, e, f have the coverage requirements of (3,3,2,2,1,1) respec-
tively, ILP gives a solution of achieved coverage (1,2,2,2,0,0) respec-
tively with total coverage of 7 and all the sensors are active. Note that,
no orientation of the sensors provide required coverage for all the tar-
gets and as a result, the problem instance is not solvable. A detailed
analysis is given in Table 2.

3.4. Impact of penalty coefficient

The penalty coefficient 𝜌 is a positive real number. It is used in the
ILP formulation to impose a penalty on the number of activated sensors.
If there are two solutions, one of them has higher total coverage than
the other, this penalty coefficient ensures to choose the former one,
irrespective of the number of activated sensors. To ensure this, 𝜌 must
be smaller than some number. Lemma 3.1 provides the upper bound of
the penalty coefficient 𝜌.

Lemma 3.1. Let n be the number of sensors. Then for Integer Linear Pro-
gramming (ILP) formulation, the penalty coefficient, 𝜌 should be smaller
than 1

n to pick a solution with higher coverage count, irrespective of acti-
vated sensor count.

Table 2
A detailed analysis of Fig. 3

Target ID Requirement Maximum possible
coverage

Coverage by
ILP

Coverage by
IQP

a 3 3 1 2
b 3 2 2 2
c 2 3 2 1
d 2 2 2 2
e 1 2 0 0
f 1 2 0 0
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Proof. Suppose, we have two solutions; in the first solution total cov-
erage and total activated sensors are a1 and b1 respectively and for the
second solution these are a2 and b2 respectively. So the ILP objective
functions for these solutions are a1 − 𝜌b1 and a2 − 𝜌b2 respectively. Now
if a2 > a1 (and also b2 ≥ b1 because higher coverage requires higher acti-
vated sensors), then to choose the second solution uniquely we have,

a2 − 𝜌b2 > a1 − 𝜌b1 (10)

From this equation we have 𝜌 < a2−a1
b2−b1

. Now the minimum value of
a2 − a1 is 1 and the maximum value of b2 − b1 is n (number of sen-
sors). Thus, plugging these values we get an upper bound for ILP which
is, 𝜌 < 1

n .

Lemma 3.1 can be generalized for other formulations (i.e. IQP) as
well. Note that, further smaller value of 𝜌 does not change the solution
of ILP. That is, if 𝜌1 and 𝜌2 both are smaller than 1

n then ILP will give
same solution for these two penalty coefficients.

Note that, if we set 𝜌>1, then more priority will be given to reduce
the number of activated sensors than maximizing the total coverage.
Throughout this paper, we penalize the number of active sensors and
choose 0 < 𝜌 < 1

n to ensure unique solutions.

4. Quadratic programming approach

The motivation behind using quadratic programming method to
solve HCT problem is to minimize the distance between required and
achieved coverage vectors by activating minimum number of sensors.
Here the required and achieved coverages both are represented as vec-
tors in multidimensional space. Due to quadratic nature of the formula-
tion, the higher is the difference between required and achieved cover-
age for a target, the higher that difference will be penalized.

More precisely, we have two m-dimensional vectors (depicted in
Fig. 4): ⃖⃗k ≡ (k1, k2, k3, . . ., km) and ⃖⃖⃗𝜓 ≡ (𝜓1, 𝜓2, 𝜓3, . . ., 𝜓m) where kt is
the coverage requirement and 𝜓 t is the achieved coverage of target gt
for t=1,2,3, … , m.

We want to minimize the vector distance d = ‖⃖⃗k − ⃖⃖⃗𝜓‖2 and also the
total number of active sensors. To include this distance we have a new
objective function to minimize:

minimize ∶
m∑

t=1
(kt − 𝜓t)2 + 𝜌

n∑
i=1

q∑
j=1
𝜒(i,j) (11)

All the other constraints are same as ILP formulation. The objective
function of this optimization problem is quadratic in nature. So we call

Fig. 4. Two m-dimensional vectors. The target vector: ⃖⃗k and the achieved vec-
tor: ⃖⃖⃗𝜓 .

it Integer Quadratic Programming (IQP).
Like ILP, IQP achieves the required coverages if the problem is solv-

able. In this case the vector distance is zero and the objective function
of Eqn. (11) is minimized. When the problem is not solvable IQP gives
minimum vector distance between achieved and required coverage vec-
tors.

For example, consider the scenario of Fig. 3(b). Here the six tar-
gets a, b, c, d, e, f have the coverage requirements of (3,3,2,2,1,1)
respectively, IQP gives a solution with 2,2,1,2,0,0 coverages respec-
tively and all the sensors are activated. Note that, no orientation of the
sensors provide required coverage for all the targets and as a result,
the problem instance is not solvable. Here the total squared difference
is (3−2)2 + (3−2)2 + (2−1)2 + (2−2)2 + (1−0)2 + (1−0)2 =5. A
detailed analysis is given in Table 2.

5. Special constraints on problem statement for under
provisioned network

The proposed ILP and IQP cannot achieve the requirements when
the network is in under-provisioned state. In this case we impose some
special criteria on our basic HCT problem to get different solutions. In
this section we explore such two criteria:–one is prioritized solution and
the other is group-wise balanced coverage.

5.1. Prioritized coverage

When the problem is not solvable we may assign priorities–targets
with higher coverage requirements will be assigned with higher priori-
ties. Basically the motivation behind this method is that due to the mul-
tiplication of kt (required coverage of target gt) with (kt − 𝜓t)2 (squared
difference of required and achieved coverage for target gt), the opti-
mizer will be compelled to choose higher value of 𝜓 t (achieved cover-
age of target gt) for targets with higher value of kt so that the value of
the whole expression is minimized, as a result, higher priority targets
will receive higher coverage. Also we want to achieve such goal acti-
vating minimum number of sensors. We modify the objective function
of the basic IQP to capture the priority criteria as follows:

minimize ∶
m∑

t=1
kt(kt − 𝜓t)2 + 𝜌

n∑
i=1

q∑
j=1
𝜒(i,j) (12)

All other constraints remain the same as ILP. The new objective
function tries to minimize the distance between achieved and required
coverage vector based on the coverage requirements of the targets. With
the introduction of kt, the term (kt − 𝜓t)2 gets prioritized, according
to the requirement kt. For example, consider a case of three targets
with 3,2 and 1 coverage requirements respectively. Suppose we have
two possible coverage tuples: (2,2,1) and (3,1,1). Also the number of
active sensors is same for these two possibilities. In this scenario, the
prioritized-IQP (pIQP) will choose the tuple (3,1,1) because, the prior-
itized distance, 3(3−3)2 + 2(2−1)2 + 1(1−1)2 =2 is smaller than the
alternative, 3(3−2)2 + 2(2−2)2 + 1(1−1)2 =3.

5.2. Groupwise balanced coverage

Another approach for under-provisioned case, is to minimize cover-
age variance within each individual coverage group. It is desirable to
have the same coverage for the targets which have the same require-
ments. The basic ILP or IQP does not guarantee this type of coverage
balance. Basically, the motivation behind this method is: besides mini-
mizing the distance between required and achieved coverage vectors by
activating minimum number of sensors, we want to minimize the total
coverage variance of all the coverage groups too, in other words, we
want to minimize the coverage variance within each coverage group. To
incorporate the balance we modify the objective function of the basic
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Fig. 5. Solutions produced by pIQP and reduced-variance IQP. There are 6 targets and 6 sensors (a) Selection of pans by pIQP (b) Selection of pans by reduced-
variance IQP. A detailed analysis is presented in Table 3.

IQP as:

minimize ∶
m∑

t=1
(kt − 𝜓t)2 +

m∑
t=1

(𝜓t − 𝜇kt
)2

mkt

+ 𝜌
n∑

i=1

q∑
j=1
𝜒(i,j) (13)

where mkt
is the number of targets that require kt-coverage and 𝜇kt

represents the mean (or average) coverage of kt-coverage group. More
precisely, 𝜇kt

is defined as:

𝜇kt
=

∑m
i=1 𝜓i[ki = kt]

mkt

(14)

Also, [ki = kt] is defined under Iverson bracket in Eqn. (3).
The objective function has three terms. The first term,∑m

t=1 (kt − 𝜓t)2 reduces the distance between achieved and required

coverage vector. The second term,
(𝜓t−𝜇kt )

2

mkt
is the portion of variance for

the target gt in its coverage group; here, the variance for the coverage

group kt is
∑m

i=1 [ki = kt]
(𝜓i−𝜇kt )

2

mkt
. As a result, the term

∑m
t=1

(𝜓t−𝜇kt )
2

mkt
represents the sum of variance-portion of each target in its coverage
group. So this term is the summation of variance in each coverage
group, in other words, this term represents total variance of all the cov-
erage groups. The last term, 𝜌

∑n
i=1

∑q
j=1 𝜒(i,j) minimizes the number of

active sensors.
All the other constraints remain same as for the ILP.
This IQP reduces the total variance of different coverage groups as

well as minimizes the vector distance. As a result this approach provides
a balanced coverage and we call it reduced-variance IQP.

For example, consider the Fig. 5. In this scenario, there are six tar-
gets, a, b, c, d, e, f with coverage requirements, (3,3,2,2,1,1) respec-
tively. In Fig. 5(a) pIQP provides a solution with (2,3,0,1,0,1) cov-
erages respectively. Note that, pIQP tries to give more coverage in 3-
coverage group, though, some lower coverage group (i.e. 1 and 2) tar-
gets remain uncovered.

In Fig. 5(b) reduced-variance IQP provides a solution with
2,2,0,1,1,1 coverages respectively. Clearly, in this case, reduced-
variance IQP gives a balanced coverage within the coverage groups.
A detailed analysis is given in Table 3.

6. Algorithms

The above-mentioned approaches are time-consuming and are non-
scalable for large networks. We therefore present a sensor oriented

Table 3
A detailed analysis of Fig. 5

Target
ID

Requirement Maximum possible
coverage

Coverage
(pIQP)

Coverage
(reduced-variance IQP)

a 3 3 2 2
b 3 3 3 2
c 2 2 0 0
d 2 2 1 1
e 1 4 0 1
f 1 3 1 1

greedy algorithm, a greedy polynomial time heuristic to solve HCT
problem.

This is an iterative algorithm. The basic idea of this algorithm is to
activate (at each iteration) a sensor in a pan that maximizes the benefit
value. The benefit of a pan for a sensor depends on the nature of the
algorithm. We envision two types of benefit functions– one is linear
and the other is quadratic. The algorithm is described in Algorithm 1.

Algorithm 1 at first constructs  ij ∀i, j, based on targets, sensors and
all the possible orientations using TIWP test. It then maintains  , a set
of all possible (sensor, orientation) pairs and  , a set of targets that have
not achieved their requirements. Initially all the sensors are inactive.
In each iteration, a (sensor, orientation) pair with maximum benefit is
selected and is included in a set . If any target within this sensor
orientation achieves its requirement, then the target is discarded from
 . Also the set  is updated by removing all the pairs corresponding
to the selected sensor. Finally, the algorithm terminates if there is no
inactive sensor or there is no target that has not received its required
coverage fully. The set  is the final output of this algorithm.

The benefit function (Algorithm 2) used in the SOGA algorithm
(Algorithm 1) has two versions; linear, corresponding to ILP and
quadratic, corresponding to IQP. In the linear version the benefit value
is the total number of targets within the orientation of the sensor that
have not yet received required coverage fully. This is a modified ver-
sion of algorithm proposed by Fusco and Gupta (2009). Their greedy
algorithm (GA) selects a sensor and orientation that can cover most of
the targets that are not yet k-covered, whereas the linear version of our
algorithm selects a sensor orientation pair that covers most of the tar-
gets that are not yet kt-covered. This linear benefit function considers
all the unachieved targets as same although an unachieved target with
higher coverage gap (i.e. higher (kt − at)) should be considered first as a
candidate for coverage. The second version (i.e. quadratic) of the func-
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Algorithm 1 SOGA (Sensor Oriented Greedy Algorithm) to solve HCT problem.
1:  {a set of all possible (sensor, orientation) pairs}
2:  ← ∅ { a subset of  , final output of this algorithm}
3:  ←  {a set of unachieved targets}
4: at ← 0 {achieved coverage for each target gt upto previous iteration}
5: While  ≠ ∅ and  ≠ ∅ do
6: (si∗ , pj∗ ) ← arg max

(si ,pj)∈
benefit(si, pj)

7:  ←  ∪ {(si∗ , pj∗ )}
8: for all gt ∈  i∗ j∗ and gt ∈  do
9: at ← at + 1
10: if at = kt then
11:  ←  − {gt}
12: remove all pairs for sensor si∗ from 

13: return 

tion considers this issue and contributes higher benefit values for higher
(kt − at). Also it helps to minimize squared distances between achieved
and required coverage vectors which in turn approximates the proposed
IQP.

Algorithm 2 benefit(si, pj).
1: value ← 0
2: for all gt ∈  ij and at < kt do
3: if linear then
4: value ← value + 1 (i.e. modified from Fusco and Gupta (Fusco

and Gupta, 2009))
5: if quadratic then
6: value ← value+ [(kt − at)2 − (kt − at − 1)2]
7: return value

For example, consider the scenario of Fig. 6. Here we have three
sensors and three targets, a, b, c with coverage requirements (3,1,1)
respectively. The linear version of benefit function (Algorithm 2) picks
the pans according to the number of unachieved targets within a pan.
For this version, the final sensor orientations are depicted in Fig. 6(a).

On the other hand, the quadratic version chooses the pans according
to the coverage gap (kt − at). The final pan selection for this type of
benefit function is depicted in Fig. 6(b).

6.1. Time complexity

The complexity of the Algorithm 1 in worst case is as follows. The
outer while loop iterates O(n) times; for each iteration the line 6 takes
O(nq) checking; for each checking the benefit function costs O(m). Also
the inner loops cost O(m). So each iteration costs O(nqm+m). Thus the
complexity is O(n2qm).

6.2. Prioritized coverage

Like IQP, prioritized-IQP requires higher computational time than
greedy heuristic. The greedy algorithm for this case is similar to
Algorithm 1 with necessary changes in the benefit function (Algo-
rithm 3). Unlike the quadratic version of Algorithm 2, this benefit func-
tion imposes priority on the coverage gap by multiplying with kt. As
a result targets with higher coverage requirements contribute higher
increase in the benefit value. If the target achieves its requirement it
adds zero to the benefit value. The benefit function in this case is as
follows:

Algorithm 3 benefit(si, pj) (for prioritized-IQP).
1: value ← 0
2: for all gt ∈  ij and at < kt do
3: value ← value + kt[(kt − at)2 − (kt − at − 1)2]
4: return value

For example, consider the scenario of Fig. 7. Here we have two
sensors and three targets, a, b, c with coverage requirements (1,1,2)
respectively. The benefit function for prioritized-IQP (Algorithm 3)
selects the pans according to the coverage requirements of the targets
within a pan. For this version, the final sensor orientations are depicted
in Fig. 7(a). It provides 1,0,2 coverages respectively. It is clear from
the figure that, greedy algorithm for prioritized-IQP gives more cover-
age for higher coverage requirement targets.

On the other hand, in Fig. 7(b), the orientations of sensors for
the same scenario are selected according to the reduced-variance IQP
version of benefit function (Algorithm 4). It provides 1,1,1 coverages
respectively. Clearly, this version of benefit function produces group-
wise balanced coverage.

6.3. Groupwise balanced coverage

The greedy algorithm for groupwise balanced coverage is similar to
Algorithm 1 with necessary changes in the benefit function. The modi-
fied function returns the total change in both vector distance (between
required and achieved coverage vector) and variances of the coverage
groups due to new orientation of sensors. The new benefit function is as
follows:

Algorithm 4 benefit(si, pj) (for reduced-variance IQP).
1: value ← 0
2: for all gt ∈  ij and at < kt do
3: 𝜇 ← 𝜇kt

{average of kt-coverage group}
4: g ← mkt

{number of targets in kt-coverage group}
5: old ← (kt − at)2 +

(at−𝜇)2
g

6: new ← (kt − at − 1)2 +
(at−𝜇+1− 1

g )
2

g
7: value ← value + (old− new)
8: return value

Here, when the coverage of a target gt is increased from at to at + 1,
the mean or average of the corresponding group is changed from 𝜇 to
𝜇 + 1

g .

7. Simulations

For evaluating the performances of the proposed formulations and
heuristics, we perform extensive simulation experiments. Especially
we provide performance comparisons with two state-of-the-art algo-
rithms: Modified-Greedy (Fusco and Gupta) (the modified version of
Fusco and Gupta’s (Fusco and Gupta, 2009) greedy algorithm) and
Greedy-Razali (the greedy algorithm of Razali et al. (2017)) with our
proposed IQP, pIQP, reduced-variance IQP and greedy algorithm. We
show that our methodologies and algorithm substantially outperform
both the above mentioned algorithms in terms of maximizing cover-
age of targets according to their requirements. Also we vary the net-
work topology by changing it’s size and node distribution. This section
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Fig. 6. The outputs of the SOGA (Algorithm 1). (a) Selection of pans by linear version and (b) by quadratic version of benefit function (Algorithm 2).

Fig. 7. The outputs of the SOGA (Algorithm 1). (a) Selection of pans by prioritized-IQP version (Algorithm 3) and (b) for reduced-variance IQP version (Algorithm 4)
of benefit function.

provides detailed experimental setup, performance metrics and perfor-
mance comparisons.

7.1. Experimental setup

In these simulations we use a 2D grid as our deployment area with
size 200×200 sq. units for “Small” scale and 1000×1000 sq. units for
“Large” scale network. According to our model camera can move only
in horizontal direction. Therefore, we can envision deployment area
placed in a two dimensional space. Both the targets and sensors are
considered as points and are randomly deployed. For the deployment
of sensors, we consider two types of distributions:

1. Uniform: sensors are distributed uniformly all over the deployment
area.

2. Zipf: 80% sensors are distributed within 20% of the area and remain-
ing 20% sensors are distributed within 80% of the deployment area.
Fig. 8 depicts zipf distribution of 100 sensors within 100×100
deployment area. Rahman et al. (2009) use this distribution for per-
formance analysis.

The range of each sensor Rs =20 units and FoV, 𝜃 = 𝜋
4 for both sized

networks. Thus each sensor has eight non-overlapping pans. Coverage
requirements are 1, 2 and 3 with uniform number of targets; that is
there are m

3 targets in each coverage requirement group where m is the
number of total targets. We set 𝜌=0.0001 for ILP and IQPs.

For small scale network, we perform two types of simulations. In the
first type, we vary the number of targets from 3 to 120, while keeping
the number of sensors fixed at 30 and in the second type, we vary the
number of sensors from 3 to 120, while keeping the number of targets
fixed at 30.

For large scale network, we also perform two types of simulations.
In the first case, we vary the number of targets from 6 to 180, while
keeping the number of sensors fixed at 45 and in the second type, we

vary the number of sensors from 6 to 210, while keeping the number of
targets fixed at 45.

For each type of simulations, we generate the scenarios in such a
way that, a larger scenario contains the smaller one. All the simulations
are performed in JAVA. We have used CPLEX (IBM ILOG CPLEX) opti-
mizer library to solve ILP and IQPs. The simulations are performed in

Fig. 8. Zipf distribution of sensors. Here 100 sensors (filled, black circles) are
distributed on 100×100 area. However, 80% of the sensors are distributed on
20% of the area (dashed square, around 45×45) and remaining 20% sensors
are distributed on rest of the area.
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Table 4
Table of experimental parameters.

Parameter Value

Deployment area 200× 200 sq. units (small) & 1000× 1000 sq. units (large)
Range of a sensor, Rs 20 units
Field of view of a sensor, 𝜃 𝜋

4
Fixed number of sensors 30, while varying number of targets from 3 to 120 (small)

45, while varying number of targets from 6 to 180 (large)
Fixed number of targets 30, while varying number of sensors from 3 to 120 (small)

45, while varying number of sensors from 6 to 210 (large)

a computer having 8 GB RAM, 1 TB Hard Disk Drive and Intel Core i5
2.30 GHz CPU.

The values of different simulation parameters are summarized in
Table 4.

7.2. Performance metrics

We use five metrics defined below to compare performance of all
approaches:

Distance Index (). The primary performance metric is distance
index () which is defined as follows:

 =
∑m

t=1 k2
t −

∑m
t=1 (kt − 𝜓t)2∑m

t=1 k2
t

(15)

where
∑m

t=1 k2
t is the maximum possible squared-distance. A higher

value of this metric indicates better coverage achieved with respect to
requirements.

Activated Sensors. To analyze sensor usage the number of activated
sensors in each approach is counted. An algorithm may not activate all
the sensors. If an algorithm provides same coverage as another algo-
rithm, but activates less number of sensors, we say that first algorithm
is better than the second, as the more is the sensor usage, the more is
network installation and maintenance cost. A lower value of activated
sensors indicates better sensor usage.

Variance. To evaluate the group-wise balance approach, variance is
measured which is the sum of group-wise variances. A lower value on
this metric indicates better coverage balancing. Formally, we measure
the following term:
m∑

t=1

(𝜓t − 𝜇kt
)2

mkt

(16)

where mkt
is number of targets that require kt-coverage and 𝜇kt

repre-
sents the mean (or average) coverage of kt-coverage group. More pre-
cisely, 𝜇kt

is defined as:

𝜇kt
=

∑m
i=1 𝜓i[ki = kt]

mkt

(17)

Here, [ki = kt] is defined under Iverson bracket in Eqn. (3). The term
(𝜓t−𝜇kt )

2

mkt
is the portion of variance for the target gt in its coverage group.

As a result, the term
∑m

t=1
(𝜓t−𝜇kt )

2

mkt
represents the sum of variance-

portion of all the targets which in turn is the total variance of all the
coverage groups.

Power(W). We measure consumed power (W) to compare power
expenditure in each approach. Consumed power is an important fac-
tor for a network. Energy-efficient network is necessary for many
applications. A lower value of this metric indicates better energy effi-
ciency.

Coverage Quality. Finally we compute coverage quality for all the
proposed approaches. In this work, we primarily focus on “coverage
quantity” or the number of sensors covering each target. However, the
distance between targets and sensors affects the coverage or monitor-
ing quality. Usually coverage quality degrades as the distance between

targets and sensors increases. In Yang et al. (2010), Razali et al. (2017)
and Mohamadi et al. (2014) the coverage quality function is defined as:
u(x) =1− x2 where x is the ratio of the distance between the target and
sensor to the sensing range.

Here we adopt the same notion. More specifically, the achieved cov-
erage quality of a target gt within a (sensor, pan) pair, (si, pj) is defined
as:

Fig. 9. For small scale network, uniform distribution of sensors: Distance index
comparison of ILP, IQP, GQ, GFG and GR. (a) keeping sensor number fixed at
30, increasing the number of targets from 3 to 120 (b) keeping target number
fixed at 30, increasing sensor number from 3 to 120.

54



A.A. Zishan et al. Journal of Network and Computer Applications 124 (2018) 44–62

U(i, j, t) =
⎧⎪⎨⎪⎩

1 −
(|v⃗it|

Rs

)2
, if gt ∈  ij and |v⃗it | < Rs

0, otherwise.
(18)

where v⃗it is a vector pointing from sensor si to target gt and Rs is the
sensing range of each homogeneous sensor.

Eventually the total coverage quality (or, simply coverage quality or
) is the total achieved qualities of all the targets for a given solution:

 =
∑
i,j,t

U(i, j, t)[si is activated in pj] (19)

The higher value of this index denotes better quality of coverage.
Note that, boundary between over-provisioned and under-

provisioned network is same for all graphs with varying “Number of
Targets” and the boundary is also same for all graphs with varying
“Number of Available Sensors”; at such boundary, sensor usage reaches
saturation (evident from Fig. (Fig. 10(a)) and (Fig. 10(b))).

Fig. 10. For small scale network, uniform distribution of sensors: Sensor usage
comparison of ILP, IQP, GQ, GFG and GR. (a) keeping sensor number fixed at
30, increasing the number of targets from 3 to 120 (b) keeping target number
fixed at 30, increasing sensor number from 3 to 120.

Table 5
Table of abbreviations.

Name Abbreviation

Integer Linear Programming ILP
Integer Quadratic Programming IQP
Prioritized IQP PIQP
Reduced Variance IQP RVIQP
Greedy Quadratic GQ
Prioritized Greedy Quadratic PGQ
Modified-Greedy (Fusco and Gupta) GFG
Greedy-Razali GR
Reduced Variance Greedy Quadratic RVGQ

7.3. Performance comparisons with other algorithms

The greedy algorithms proposed by Fusco and Gupta (2009) are for
k-coverage problem for gaining coverage maximization with minimum
sensors, which is a special case of our problem domain, when all the
targets have k-coverage requirement. Therefore we choose their greedy
algorithm (with modification for heterogeneous or kt-coverage require-
ment, we showed the modification in Algorithm 1 inside benefit func-
tion under linear case) to provide performance comparison with other
approaches.

We incorporate another work for performance comparison. In this
work (Razali et al., 2017), Razali et al. propose a greedy based and a
learning-automata based algorithm to solve priority-based target cov-
erage with adjustable sensing ranges (PTCASR) problem. Here targets
have different coverage quality requirements that reflect their priori-
ties and sensors are directional with adjustable ranges. The problem is
to find some cover sets with appropriate sensor configurations each of
which provides required coverage quality to all the targets and maxi-
mize the network lifetime.

We choose their greedy-based algorithm (calling it Greedy-Razali) to
show comparisons. Here we choose the input values of different param-
eters as follows:

• The number of power levels, a=1; in this algorithm a denotes the
alternative power levels which in turn denotes the number of differ-
ent ranges for a sensor.

• The criteria weighting parameter, Γ = (1,0,0); in each iteration the
algorithm chooses a sensor direction that maximizes a benefit value.
This value is computed based on three criteria i.e covering power
(CP), covering waste (CW), and residual lifetime (RL). The input vec-
tor Γ = (𝛾1, 𝛾2, 𝛾3) is used for weighting the three above-mentioned
criteria based on relevance. We choose only the covering power (CP)
to compute the value.

• The coverage quality requirement for target gt as kt
nmax

; in this algo-
rithm, the coverage quality requirements are selected between 0 and
1. Here we assign the quality requirements according to the cover-
age requirements of the targets. Note that, in these simulations max-
imum number of sensors nmax is 120 for small network and 210 for
large network.

This algorithm may generate more than one cover set. Without loss of
generality we choose the first cover set and apply the above mentioned
metrics to compare performances.

We show that our methodologies and algorithm substantially out-
perform both the above mentioned algorithms in terms of maximizing
coverage of targets according to their requirements.

For convenience we use abbreviations for the formulations and algo-
rithms. The abbreviations are presented in Table 5.

7.4. Small scale network with uniform distribution

In this subsection, we perform simulations for small scale network
with uniform sensor distribution. Detailed analyses are given below:
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7.4.1. Distance index analysis
In first set of experiments, we gradually increase number of tar-

gets from 3 to 120, while keeping the number of sensors fixed at 30.
As the number of targets gradually increases the network enters into
under-provisioned system from over-provisioned system and the dis-
tance between achieved and required coverage vectors also gradually
increases. The  curve is shown in Fig. 9. From Fig. 9 (a), it is evident
that the distance index decreases as the number of targets increases
and IQP performs best among all approaches. We can interpret the fact
that distance index decreases as the number of targets increases in the
following way:

From Eqn. (15), we get:

 =
∑m

t=1 k2
t −

∑m
t=1 (kt − 𝜓t)2∑m

t=1 k2
t

or,

 = 1 −
∑m

t=1 (kt − 𝜓t)2∑m
t=1 k2

t
(20)

With the increase of number of targets, both
∑m

t=1 (kt −𝜓t)2 and∑m
t=1 k2

t from Eqn. (20) increases. But the amount of increase for∑m
t=1 (kt − 𝜓t)2 is less than or equal to the amount of increase for∑m
t=1 k2

t as 𝜓 t ≥ 0 for all t=1,2,… , m. As a result, with the increase

of number of targets, the fraction
∑m

t=1 (kt−𝜓t )2∑m
t=1 k2

t
from Eqn. (20) increases

making  decrease.
In the second set of experiments, we gradually increase the num-

ber of sensors from 3 to 120, while keeping the number of targets
fixed at 30. Clearly, the network changes from under-provisioned to
over-provisioned state. The result is shown in Fig. 9(b). With the
increase of number of available sensors, achieved coverage of each
target increases, i.e., 𝜓 t increases for t=1,2,… , m. As a result, with

the increase of number of available sensors, the fraction
∑m

t=1 (kt−𝜓t )2∑m
t=1 k2

t
from Eqn. (20) decreases making  increase. But 𝜓 t becomes close
to kt at a point and as 𝜓 t is bounded by kt,  becomes saturated to
value 1 except Greedy-Razali (evident from Eqn. (20)). We see the val-
idation of this fact from Fig. 9(b). The distance index becomes higher
as the number of sensor increases and IQP performs the best. We see
from Fig. 9(b) that with the increase of number of available sensors,
distance index becomes saturated at a point of time. At such satura-
tion, value of distance index becomes close to 1. From the equation
of distance index (Eqn. (15)), we understand that value of distance
index becomes 1 when all the targets receive their necessary cover-
ages.

For the Greedy-Razali algorithm,  index becomes saturated
at below 1. Once all the targets get their quality requirements,
increasing the number of sensors does not change the distance index
value.

From Fig. 9 it is evident that for both kinds of simulations greedy
algorithms are able to approximate the corresponding ILP and IQP for-
mulations. More specifically, the Modified-Greedy (Fusco and Gupta)
algorithm approximates ILP and Greedy-Quadratic approximates IQP.
Hence, we conclude that IQP is better in achieving  than other
approaches and Greedy-Quadratic approximates the optimal solution
very closely.

7.4.2. Sensor usage analysis
Fig. 10 shows the number of activated sensors for both kinds of

simulation experiments. In the first kind when the number of targets
increases (Fig. 10(a)) the number of activated sensors also increases.
But when the network enters into under-provisioned state, all the sensor
usage reaches saturation and further increase in targets does not change
the shape. Also it is evident from Fig. 10(a) that all the approaches
use almost same number of sensors. The Greedy-Razali method reduces

sensor usage, but in distance index analysis this method performs worse
than IQP.

When we increase the number of sensors (Fig. 10(b)) the number
of activated sensors become fixed after a certain number of available
sensors. At that point the number of sensors becomes good enough
to meet all coverage or quality requirements and the network turns
into over-provisioned system. As a result, further increase in sensor
does not affect sensor usage. Also when the network remains in under-
provisioned state, Greedy-Razali uses fewest sensors but it performs
worse than IQP in achieving .

7.4.3. Relation between distance index analysis and sensor usage analysis
graphs at sensor saturation

With the increase of number of targets, sensor usage reaches satu-
ration at a point of time and the network enters into under-provisioned
state at that point (evident from Fig. 10 (a)). When the sensor usage
reaches saturation, the newly added targets do not get required cov-
erage and as a result Distance Index value lowers down, evident from
Fig. 9 (a).

With the increase of number of available sensors, sensor usage
reaches saturation at a point of time and the network enters into over-
provisioned state at that point (evident from Fig. 10 (b)). The saturation
in sensor usage refers to the fact that newly added sensors do not help
in improving required coverage of the targets as all the targets have
already received their required coverage. This is evident from Fig. 9 (b)
as value of Distance Index is becoming saturated to 1.

7.4.4. Power analysis
In order to measure power consumption we use the same model

provided in Farzana et al. (2016). In this model, a visual sensor can be
either in three possible states: sleep, idle, active. In active state sensors
monitor the targets, transmit accrued data and consume highest power
among other states. In idle state sensors are turned on but does not
perform any specific task rather than simply running the OS processes
in background. In sleep state sensors are inactive and consume lowest
power. The total consumed power (Pc) is calculated as:

Pc = (number of active sensors)×Pa+ (number of idle sensors)×Pi +
(number of sensors in sleep state)×Ps

where Pa is consumed power of an active sensor, Pi is consumed
power of an idle sensor and Ps is consumed power of a sensor in sleep
state. We use the same values used for Panoptes video sensors (Feng et
al., 2005) which are Pa =5.268 W, Pi =1.473 W and Ps =0.058 W.

In Fig. 11(a) the number of targets is increased from 3 to 120
with fixed 30 sensors. So the network gradually enters into under-
provisioned state, more and more sensors get activated and the total
power consumption increases. ILP and IQP both consume almost same
power and their greedy versions almost merge with them. When the net-
work is in under-provisioned state, the sensor usage reaches saturation
and the total consumed power remains constant, i.e., further increase
in targets does not affect the power consumption.

In Fig. 11(b) we change the network from under-provisioned to
over-provisioned state by adding sensors, while keeping the number
of targets fixed at 30. In under-provisioned state any added new sen-
sor becomes immediately activated. As a result, power consumption
increases gradually. When the network enters into over-provisioned
state, adding new sensors does not matter much and the power con-
sumption remains almost flat. The ILP and IQP consume almost same
amount of power. Greedy algorithms follow corresponding ILP, IQP pat-
terns. Here the Greedy-Razali algorithm consumes lowest power.

7.4.5. Relation between sensor usage analysis and power analysis graphs
With the increase of number of targets, sensor usage rises at first,

then becomes saturated at a point and at that point network enters into
under-provisioned state (evident from Fig. 10 (a)). We see similar pat-
tern in power analysis graph too. From Fig. 11 (a), we see that, with the
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Fig. 11. For small scale network, uniform distribution of sensors: Power con-
sumption comparison of ILP, IQP, GQ, GFG and GR. (a) keeping sensor number
fixed at 30, increasing the number of targets from 3 to 120 (b) keeping target
number fixed at 30, increasing sensor number from 3 to 120.

increase of number of targets, power consumption by the activated sen-
sors rises at first, then becomes saturated at a point and at that point,
network enters into under-provisioned state. We can conclude that with
the increase of number of targets, sensor usage and power consump-
tion by activated sensors follow similar pattern. This is also intuitive as
power consumption is proportional to sensor usage.

With the increase of number of available sensors, sensor usage rises
at first, then becomes saturated at a point and at that point, network
enters into over-provisioned state (evident from Fig. 10 (b)). We see
similar pattern in power analysis graph too. From Fig. 11 (b), we see
that, with the increase of number of available sensors, power consump-
tion by activated sensors rises at first, then becomes saturated at a point
and at that point, network enters into over-provisioned sate. We can
conclude that with the increase of number of available sensors, sen-
sor usage and power consumption by activated sensors follow similar
pattern. This is also intuitive as power consumption is proportional to
sensor usage.

7.4.6. Coverage quality analysis
Fig. 12 shows the coverage quality index () for both kinds of

Fig. 12. For small scale network, uniform distribution of sensors: Coverage
quality comparison of ILP, IQP, GQ, GFG and GR. (a) keeping sensor number
fixed at 30, increasing the number of targets from 3 to 120 (b) keeping target
number fixed at 30, increasing sensor number from 3 to 120.

simulation experiments. In the first kind when the number of targets
increases (Fig. 12(a)) the coverage quality increases. Here increasing
the number of targets increases the density of objects (i.e. sensors and
targets) and thus reduces the distances among sensors and targets. Also
additional targets contribute to the  value. Thus coverage quality
increases. Here ILP and IQP both achieve maximum coverage quality.

When we increase the number of sensors (Fig. 12(b)) the cover-
age quality also increases. But in this case, coverage quality becomes
saturated after certain point. Though increasing the number of sen-
sors reduces the distances among sensors and targets, the sensor usage
becomes saturated; additional sensors do not need to be activated once
the requirements are met. As a result  index becomes saturated.

Also, for both these cases, IQP achieves maximum coverage quality.
Note that, performance of Greedy-Razali depends on given priorities of
targets.

7.4.7. Prioritized coverage analysis
Fig. 13 depicts the group-wise  of Modified-Greedy (Fusco

and Gupta), IQP, prioritized-IQP, greedy-quadratic, Greedy-Razali and
prioritized-greedy for an under-provisioned network.
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Fig. 13. Distance index for various coverage groups for under-provisioned net-
work with number of targets=75 and number of sensors=30.

In this case the number of targets is 75 and the number of sensors
is 30. From the Fig. 10(a) it is clear that the scenario is in under-
provisioned state. The prioritized IQP (pIQP) provides more cover-
age in 3-coverage requirement group as it assigns highest priority to
that group. As a result the  in coverage group 3 is the maximum
for pIQP. IQP provides more coverage in 1-coverage and 2-coverage
requirement group than the prioritized IQP (pIQP), but the priori-
tized IQP (pIQP) provides greater coverage in 3-coverage requirement
group than IQP–this was the main motivation behind designing priori-
tized IQP (pIQP)–to provide more coverage in higher coverage require-
ment group. For all the three groups, clearly the priority based greedy-
quadratic algorithm approximates pIQP. The Modified-Greedy (Fusco
and Gupta) and Greedy-Razali do not impose any priority and thus can-
not provide higher  in coverage group 3 than pIQP and priority
based greedy-quadratic.

7.4.8. Variance analysis
In Fig. 14(a) the group-wise coverage balance is captured using

total variance. Total variance is the summation of variance within each
coverage group. The number of targets is increased from 3 to 120
while keeping total sensors fixed at 30. The curves of total variance
for Modified-Greedy (Fusco and Gupta), IQP, reduced-variance IQP,
Greedy-Quadratic, Reduced Variance Greedy-Quadratic and Greedy-
Razali are presented. It is evident from the graph that Greedy-Razali
can reduce the total variance among other approaches. But it performs
worse than IQP in  analysis (Fig. 14(b)). Also the Greedy-Variance
approximates the reduced-variance IQP the Greedy-Quadratic performs
better than Modified-Greedy (Fusco and Gupta).

The curves of Fig. 14(a) reveal an interesting nature of total vari-
ance. The total variance becomes saturated with some fluctuations
when the network enters into under-provisioned state. This is because
at that state additional targets get very few coverage as the number of
sensors is fixed. As a result additional targets contribute nearly zero to
the total variance which makes it almost constant in under-provisioned
state.

The small fluctuations are due to the fact that a few of the newly
added targets receive some coverage by the existing deployed sensors.
Fig. 14(b) depicts the  values for above mentioned approaches. Here
the reduced-variance IQP has highest  value. The basic IQP almost
follows the reduced-variance IQP but from 14(a) we see, reduced-
variance IQP has lower variance than basic IQP. Greedy approaches
approximate the corresponding formulations.

Fig. 14. Variance Analysis for under-provisioned network. (a) Total variance of
three coverage groups vs Number of Targets. (b) Distance index vs Number of
Targets. Sensor number is fixed at 30 and Targets changing from 3 to 120.

Here considering both the distance index and groupwise variance,
reduced-variance IQP performs best and the corresponding greedy,
RVGQ approximate the formulation.

7.5. Large scale network

In this subsection, we present the performance results for large scale
network with uniform sensor distribution. Detailed analyses for Dis-
tance Index and Activated Sensors are given below:

7.5.1. Distance index analysis
In first set of experiments, we gradually increase number of tar-

gets from 6 to 180, while keeping the number of sensors fixed at 45.
As the number of targets gradually increases the network enters into
under-provisioned system from over-provisioned system and the dis-
tance between achieved and required coverage vectors also gradually
increases. The  curve is shown in Fig. 15. From Fig. 15 (a), it is evi-
dent that the distance index decreases as the number of targets increases
and IQP performs best among all approaches.

In the second set of experiments, we gradually increase the number
of sensors from 6 to 210, while keeping the number of targets fixed
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Fig. 15. For large scale network, uniform distribution of sensors: Distance index
comparison of ILP, IQP, GQ, GFG and GR (a) keeping sensor number fixed at
45, increasing the number of targets from 6 to 180 (b) keeping target number
fixed at 45, increasing sensor number from 6 to 210.

at 45. Clearly, the network changes from under-provisioned to over-
provisioned state. The result is shown in Fig. 15(b). The distance index
becomes higher as the number of sensor increases and IQP performs
the best. We see from Fig. 15(b) that with the increase of number of
available sensors, distance index becomes saturated at a point of time.
At such saturation, value of distance index becomes close to 1. From
the equation of distance index (Eqn. (15)), we understand that value of
distance index becomes 1 when all the targets receive their necessary
coverages.

For the Greedy-Razali algorithm,  index becomes saturated
at below 1. Once all the targets get their quality requirements,
increasing the number of sensors does not change the distance index
value.

From Fig. 15 it is evident that for both kinds of simulations greedy
algorithms are able to approximate the corresponding ILP and IQP for-
mulations. More specifically, the Modified-Greedy (Fusco and Gupta)
algorithm approximates ILP and Greedy-Quadratic approximates IQP.
The Greedy-Razali performs worse than IQP in all cases. Hence, we
conclude that IQP is better in achieving  than other approaches and
Greedy-Quadratic approximates the optimal solution very closely.

Fig. 16. For large scale network, uniform distribution of sensors: Sensor usage
comparison of ILP, IQP, GQ, GFG and GR. (a) keeping sensor number fixed at
45, increasing the number of targets from 6 to 180 (b) keeping target number
fixed at 45, increasing sensor number from 6 to 210.

It is evident from Figs. 9 and 15 that, for large scale network, shapes
of the curves are similar to those of the small scale network. Therefore
our proposed approaches do not depend on scale of the network.

7.5.2. Sensor usage analysis
Fig. 16 shows the number of activated sensors for both kinds of

simulation experiments in large network.
In the first kind when the number of targets increases (Fig. 16(a))

the number of activated sensors also increases. But when the network
enters into under-provisioned state, all the sensor usage reaches satura-
tion and further increase in targets does not change the shape. Also it is
evident from Fig. 16(a) that all the approaches use almost same number
of sensors in under-provisioned state.

When we increase the number of sensors (Fig. 16(b)) the number
of activated sensors become fixed after a certain number of available
sensors. At that point the number of sensors becomes good enough to
meet all coverage or quality requirements and the network turns into
over-provisioned system. As a result, further increase in sensor does not
affect sensor usage. Also when the network enters into over-provisioned
state, Greedy-Razali uses fewest sensors but it performs worse than IQP
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Fig. 17. For zipf distribution of sensors: Distance index comparison of ILP, IQP,
GQ, GFG and GR (a) keeping sensor number fixed at 30, increasing the number
of targets from 3 to 120 (b) keeping target number fixed at 30, increasing sensor
number from 5 to 120.

in achieving .

7.6. Zipf distribution

In this subsection, we extend our simulations for zipf distribution of
sensors. We perform Distance Index and Sensor Usage analysis in small
network as following:

7.6.1. Distance index analysis
In first set of experiments, we gradually increase number of tar-

gets from 3 to 120, while keeping the number of sensors fixed at 30.
As the number of targets gradually increases the network enters into
under-provisioned system from over-provisioned system and the dis-
tance between achieved and required coverage vectors also gradually
increases. The  curve is shown in Fig. 17. From Fig. 17 (a), it is evi-
dent that the distance index decreases as the number of targets increases
and IQP performs best among all approaches.

In the second set of experiments, we gradually increase the number
of sensors from 3 to 120, while keeping the number of targets fixed
at 30. Clearly, the network changes from under-provisioned to over-

Fig. 18. For zipf distribution of sensors: Sensor usage comparison of ILP, IQP,
GQ, GFG and GR. (a) keeping sensor number fixed at 30, increasing the number
of targets from 3 to 120 (b) keeping target number fixed at 30, increasing sensor
number from 5 to 120.

provisioned state. The result is shown in Fig. 17(b). The distance index
becomes higher as the number of sensor increases and IQP performs
the best. We see from Fig. 17(b) that with the increase of number of
available sensors, distance index becomes saturated at a point of time.
At such saturation, value of distance index becomes close to 1. From
the equation of distance index (Eqn. (15)), we understand that value of
distance index becomes 1 when all the targets receive their necessary
coverages.

From Fig. 17 it is evident that for both kinds of simulations greedy
algorithms are able to approximate the corresponding ILP and IQP for-
mulations. More specifically, the Modified-Greedy (Fusco and Gupta)
algorithm approximates ILP and Greedy-Quadratic approximates IQP.
The Greedy-Razali performs worse than IQP in all cases. Hence, we
conclude that IQP is better in achieving  than other approaches and
Greedy-Quadratic approximates the optimal solution very closely.

7.6.2. Sensor usage analysis
Fig. 18 shows the number of activated sensors for both kinds of

simulation experiments. In the first kind when the number of targets
increases (Fig. 18(a)) the number of activated sensors also increases.
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Fig. 19. Computational time comparison of ILP and IQP in large network with
uniform sensor distribution. (a) keeping sensor number fixed at 45, increasing
the number of targets from 6 to 180 (b) keeping target number fixed at 45,
increasing sensor number from 6 to 210.

But when the network enters into under-provisioned state, all the sensor
usage reaches saturation and further increase in targets does not change
the shape. Also it is evident from Fig. 18(a) that all the approaches use
almost same number of sensors in under-provisioned state.

When we increase the number of sensors (Fig. 18(b)) the number
of activated sensors become fixed after a certain number of available
sensors. At that point the number of sensors becomes good enough to
meet all coverage or quality requirements and the network turns into
over-provisioned system. As a result, further increase in sensor does not
affect sensor usage.

7.7. Computation time analysis

As the network becomes more congested with sensor or target nodes,
ILP and IQP formulations require more time to find the solution. Fig. 19
denotes the computation time of ILP and IQP approaches for large scale
network with uniform sensor distribution.

In Fig. 19(a), number of targets is increased from 6 to 180 while
keeping sensors fixed at 45. As the number of targets increases, the
network enters into under-provisioned state and the coverage problem

Table 6
Summary of experimental results.

Approach Result

IQP Outperforms all the other approaches in terms of
distance index

Greedy quadratic Approximates the IQP but requires less
time-complexity

ILP Provides maximum total coverage
Modified greedy
algorithm (Fusco and
Gupta)

Approximates the ILP

Greedy-Razali Uses lower number of sensors and consumes lower
power than IQP. But it performs worse than IQP in
terms of distance index.

pIQP Provides higher distance index (i.e., higher
coverage) in higher coverage group

Priority-based Greedy
quadratic

Approximates the pIQP but requires less
time-complexity

Reduced-variance IQP Provides balanced coverage within each coverage
group

Reduced-variance
Greedy quadratic

Approximates the reduced-variance IQP but
requires less time-complexity

becomes more complex. Thus it requires more time to solve for IQP.
In Fig. 19(b), number of sensors is increased from 6 to 210 while

keeping the number of targets fixed at 45. Here, the network gradu-
ally enters in over-provisioned from under-provisioned state after some
point. As a result, initially IQP requires more time but after certain
point, it takes fewer time.

From Fig. 19 it is clearly evident that IQP requires significant
amount of time compared to ILP in under-provisioned system. Note
that, the greedy algorithms require very insignificant amount of time
compared to ILP and IQP.

7.8. Impact of network topology

Comparing the curves of large network (Figs. 15 and 16) with the
respective small network curves (Figs. 9 and 10), it is evident that, our
proposed approaches show similar result irrespective of the size of the
network.

Similar argument can be drawn from comparison between uniform
(Figs. 9 and 10) and zipf (Figs. 17 and 18) distribution.

Thus our proposed approaches do not depend on network topologies
in terms of network size and node distribution.

All the simulation results are summarized in the Table 6.

8. Conclusion and future works

In this paper, heterogeneous target coverage problem for VSN,
where targets have different coverage requirements, has been inves-
tigated. To this end, we propose integer linear/quadratic programming
formulations (ILP, IQP) and corresponding greedy heuristics (greedy
linear and greedy quadratic) that can be completed in polynomial
time. IQP outperforms all the approaches in terms of fulfilling cover-
age requirements although its sensor usage and power consumption are
higher than other approaches. In large networks, IQP is not suitable,
hence its greedy version (i.e., greedy IQP) has been designed and it
shows almost similar performance behavior of IQP. To tackle under-
provisioned networks, we reformulate the problem as prioritized IQP,
and reduced variance IQP. We also devise their corresponding greedy
heuristics (priority based greedy quadratic and reduced variance greedy
quadratic). Prioritized IQP is good at covering targets with higher cov-
erage requirements and reduced variance IQP is suitable for coverage
balancing within each coverage requirement group. In large networks,
their corresponding greedy heuristics are recommendable as they show
similar behavior of their respective formulations. In future we plan to
explore the behavior of the formulations and heuristics under larger
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network settings. Also we want to extend our work for other two direc-
tions (tilt and zoom) of PTZ cameras. It will be good to see how the
algorithms perform in mobile environments.
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