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Abstract
Graph Neural Networks (GNNs) are widely used and deployed for
graph-based prediction tasks. However, as good as GNNs are for
learning graph data, they also come with the risk of privacy leakage.
For instance, an attacker can run carefully crafted queries on the
GNNs and, from the responses, can infer the existence of an edge be-
tween a pair of nodes. This attack, dubbed as a link-stealing attack,
can jeopardize the user’s privacy by leaking potentially sensitive
information. To protect against this attack, we propose an approach
calledNodeAugmentation forRestrictingGraphs from Insinuating
their Structure (NARGIS) and study its feasibility. NARGIS is fo-
cused on reshaping the graph embedding space so that the posterior
from the GNN model will still provide utility for the prediction task
but will introduce ambiguity for the link-stealing attackers. To
this end, NARGIS applies spectral clustering on the given graph to
facilitate it being augmented with new nodes- that have learned
features instead of fixed ones. It utilizes tri-level optimization for
learning parameters for the GNN model, surrogate attacker model,
and our defense model (i.e. learnable node features). We extensively
evaluate NARGIS on three benchmark citation datasets over eight
knowledge availability settings for the attackers. We also evaluate
the model fidelity and defense performance on influence-based link
inference attacks. Through our studies, we have figured out the best
feature of NARGIS- its superior fidelity-privacy performance trade-
off in a significant number of cases. We also have discovered in
which cases the model needs to be improved, and proposed ways to
integrate different schemes to make the model more robust against
link stealing attacks.

1 Introduction
Graph-based data representations are widely used in online prod-
ucts [10], social networks [14], content services [23], and web ser-
vices [12]. For learning graph-based data, different kinds of Graph
Neural Network (GNN) architectures, e.g., GCN [7], GAT [16], SAGE
[4] have been deployed in these services to predict user preferences,
suggest preferable products, and enhance community structure.
These online services gather user data that often contain sensitive
information and are often of interest to malicious parties. Hence,
these services can sometimes be provided through an API [11]
instead of direct access to the models for security and privacy pur-
poses. Nonetheless, both API and model access are still vulnerable
to leaking sensitive information through the GNNs [5, 22]. When a
GNN is trained on a particular graph dataset, malicious parties can
run carefully crafted queries on that GNN’s API and, from the re-
sponses, can reverse-engineer the graph structures. These forms of
attacks are known as Graph ReconstructionAttacks (GIA) [5, 28, 29],

where an adversary has some prior (i.e., node features, dataset name,
etc.) or posterior (i.e., APIs providing the probability of what movie
a user is likely to watch in a streaming platform etc.) knowledge to
recover the relations in the graph. One form of graph reconstruction
attack is the link-stealing attack (also known as edge inference at-
tack), introduced by He et al. [5], where an attacker can run queries
on a GNN trained on a graph dataset for node classification tasks,
recover the prediction probabilities per node (known and referred
to as posteriors), and run similarity measure-based unsupervised
and supervised learning algorithms to predict the existence of an
edge between a pair of nodes. Link-stealing attacks have quantita-
tively shown the vulnerabilities of graph structures’ privacy while
used as a dataset for GNN learning. Attackers even often use sur-
rogate models trained on another graph from the same domain to
replicate the original GNN functionalities and infer the training
graph structure.
Prior Defenses. To protect against link-stealing attacks that lever-
age node posteriors, several approaches have been proposed based
on Differential Privacy (DP). Zhu et al. [30] introduced link-local
differential privacy, where one introduces noise in the localized
graph’s adjacency matrix of decentralized nodes, for training a
GNN in a central server without revealing the exact existence of
edges. Kolluri et al. [9] proposed a new Multi-layer perceptron
(MLP) based architecture, where the edge information is condensed
in clustering-ingrained features and fed into MLPs for node classi-
fication task, enabling learning on graphs while obfuscating edge
information. While the approach by Zhu et al. [30] achieves defense
guarantees in localized settings, a requirement of this defense is
that the nodes perturb their adjacency lists before sending them
to the server. Also, in the approach by Kolluri et al. [9], edge in-
formation is not explicitly transmitted across the network- rather,
they are compressed into a latent space representation before being
transmitted. In both cases, the original edge information is modified
or lost, and thus the expressiveness of the learned representation
of the concerned graphs is reduced. Wu et al. [22] discussed dif-
ferent Differentially Private Graph Convolutional Neural Networks
(DP-GCN) mechanisms (EdgeRand, LapGraph) for defending against
edge inference attacks. While their approach achieves DP guaran-
tee, both of them have to trade off model utility highly (𝜖 <= 1)
to safeguard privacy, or sacrifice privacy to attain higher utility
(𝜖 >= 6). Also, EdgeRand changes the graph density extensively,
often creating out-of-memory error for large graphs.
Defense Key Insight. A key insight in the DP-based defenses is
the injection of noises to defend the graph structure from being
inferred. These noises are added in the adjacency matrix of the
graphs [22], which can change the sparsity of the graph to a huge
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extent (EdgeRand) or delete some old edges (LapGraph). It is to
be noted that noise injection can also be a form of attack. Noise-
based perturbation as an attack form is referred to as the poisoning
attacks. Poisoning attacks modify the graph structures at training
time by changing the node features or even inserting fake nodes,
leading to compromising the learning ability of the GNNs. The key
takeaway is that a defense (noise addition) can also be a form of
attack. As DP-based approaches’ noise addition has been performed
on the edge perspective, it now raises a counter-question, Can a
node-based noise addition (i.e., a poisoning attack through changing
node features or adding fake nodes) also be a form of defense against
link stealing attacks for the Graphs?

To answer this question, we analyzed a form of graph modifica-
tion attacks known as Graph Injection Attacks (GIA) [15, 18, 19, 31],
where the adversary inserts carefully crafted nodes in a graph (i.e.,
publishing a fake paper to perturb a citation network, etc.) to mis-
lead the prediction of GNNs through the perturbation of posteriors.
The intuition is that if a defense mechanism can take the role of
attacker and insert fake nodes into the graph on which the GNN
will be trained, it can “counter-attack” the attacker. However, it
will also lead to the GNN prediction model being sub-optimized for
the original task, as learning the graph with perturbed topology
will cause the node posteriors to be perturbed, too. So, the problem
can posed as a bi-optimization: perturbing the graph structure and
GNN posteriors enough to defend against the attackers but also to
provide optimal service to the user within a range. Defenses for
ML models through bi-level optimization have been proposed by
Wu et al. [21]. Interestingly, it works by learning a noise transi-
tion matrix for posterior perturbations. However, this defense is
tailored against model-stealing attacks for images and does not
cover the graph domain. Also, the optimization is done after the
learning to hide the model from being inferred, whereas our target
is to optimize during training to hide the training data structure.
Moreover, the user task and the attacker task are the same (image
classification) in the stated model. In contrast, in our model, the
user focus is to learn to predict node classes, and the attacker’s
focus is on edge inference.
Motivating Example for Our Approach For example, in Figure 1,
three nodes 𝑢𝑎, 𝑢𝑏 , 𝑢𝑐 ∈ 𝑉 have the posterior output vectors for a
two-class classification problem as a = [0.3, 0.7], b = [0.1, 0.9], &
c = [0.4, 0.6], respectively, and only node pair (𝑢𝑎, 𝑢𝑐 ) have an edge
between them in their corresponding graph (none of the nodes are
drawn in the figure as per scale and orientation). The Euclidean
distance between the posteriors are (pairwise): (𝑑𝑎𝑏 , 𝑑𝑏𝑐 , 𝑑𝑐𝑎) =
(0.28, 0.42, 0.14). A link-stealing attacker can set a distance upper-
bound threshold of 0.2, and hypothesize correctly that the node
pair (𝑢𝑎, 𝑢𝑐 ) have an edge between them (as only these nodes are
not more distant than the threshold). But if the embeddings are per-
turbed in amanner such that the posteriors become a′ = [0.13, 0.87],
b′ = [0.35, 0.65] & c′ = [0.45, 0.55], then the classes will remain
same still (the second entry being always the highest, inferring all
have the label 1 from between {0, 1}), but the Euclidean distance
would become (𝑑𝑎′𝑏′ , 𝑑𝑏′𝑐′ , 𝑑𝑐′𝑎′ ) = (0.31, 0.14, 0.45) Hence if the
link stealer has a threshold of 0.2 again, it will likely conclude that
there is an edge between node pair (𝑢𝑏 , 𝑢𝑐 ) and the attack is thus
thwarted.

Real Edge
Real Non-Edge
Predicted Edge
Predicted Non Edge

 

Original
Graph

Graph
Predicted

by
Attacker

Figure 1: Illustration of Posterior Perturbation in Posterior
Simplex Space for Protection against Link Stealing Attacks

Our Approach. Our approach focuses on reshaping the graph
embedding space in such a way that the posteriors from the GNN
model will still provide utility for node prediction but will introduce
ambiguity for the link-stealing attackers. As the graph embedding
space is constructed through message passing among the nodes,
and in a 𝑘 − 𝑙𝑎𝑦𝑒𝑟 GNN, this information exchange ranges to the
whole 𝑘−hop neighborhood of a graph; our intuition is that we
can augment new nodes with carefully crafted features, whose
introduction can perturb the embedding space of a cluster of nodes
in their own 𝑘−neighborhoods. we integrate a form of poison attack
in the design of our defense, as our research question demanded.
The idea of inserting nodes with crafted features resembles the node
injection attack introduced by Zou et al. [31], where the features
are learned through optimization instead of being fixed. Besides, to
ensure that our new nodes can influence a significant neighborhood
in a graph, we apply spectral clustering on the graph first and
augment edges from the new node to the center node of the formed
clusters. This strategy is different from the one applied by Zou
et al. [31], where topologically defected edges are selected under
different criteria. Moreover, we introduce a tri-level optimization
for learning parameters for our defense model (learnable node
features), the model parameters for the target GNN task, and also
for a surrogate attacker model which helps to simulate the possible
attacks in order to be prepared against. We name our approach as
“NodeAugmentation forRestrictingGraphs from Insinuating their
Structure” (NARGIS). We evaluate NARGIS on three benchmark
citation dataset: Cora, Citeseer, Pubmed [25]. We also evaluated our
approach on LinkTeller [22], a state-of-the-art link inference attack.
Through our evaluations, we have found some cases where our
model and their variants can better the performance of Differential-
Privacy (DP) based defenses. Also, we could find out the limitations
of our model while defending against some form of attacks.
Contributions. This paper makes the following technical contri-
butions.

• We studied how a form of Graph modification attack can be
integrated as a defense for a Graph link-stealing or edge in-
ference attack. To this end, we have introduced NARGIS–a
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node augmentation-based defense for Graph Neural Net-
works, which can restrict the model from providing posteri-
ors leading to edge inference by attackers, by perturbing the
embedding space through augmenting nodes and learning
their features.

• We have evaluated our approach on three citation datasets:
Cora, Citeseer and Pubmed [25], on eight attacking settings
stated in [5] and on LinkTeller [22]. We also evaluated node
prediction performances on the augmented model.

• We propose that NARGIS can be tuned to get near-optimal
defensive performances as the DP-based Defenses, with
greater fidelity.

• We also discussed the cases where the model needs to im-
prove and how different schemes can be used in further
investigation to make it perform better.

2 Preliminaries
In this section, we introduce preliminary definitions of Graph Learn-
ing, and present the scenarios when the privacy of user data, en-
coded in the graph concerned, are compromised. We then define
the attack our model is trying to defend from.

2.1 Graph Learning
2.1.1 Graph. A graph 𝐺 is an ordered tuple (𝑉 , 𝐸) where 𝑉 is
the vertex set and 𝐸 is the edge set. Edges can be represented
by Adjacency Matrix A; for a graph with 𝑛 nodes, i.e., |𝑉 | = 𝑛,
A ∈ {0, 1}𝑛×𝑛 . Formally, for A, A𝑖 𝑗 = [(𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸]. Node attributes
are represented as amatrixX ∈ R𝑛×𝑑 with feature dimension𝑑 ∈ N.
The label set Y ∈ {0, 1, . . . , 𝑐−1}𝑛×1 is a column vector denoting the
label of each node (from candidate labels𝐶 = {0, 1, . . . , 𝑐 −1}). Thus
we can represent a Graph 𝐺 as an ordered 6-tuple (𝑉 ,A,X,Y, 𝑛, 𝑐).

2.1.2 Node Embedding. An embedding function is a mapping from
a high dimensional space to a low-dimensional one that can pre-
serve particular properties of the domain space. For a graph 𝐺 , a
Node Embedding is a function 𝑓 : 𝐺 →H ∈ R𝑛×𝑑𝑒 , where 𝑑𝑒 << 𝑑

is the embedding dimension and H is the Embedding space. For
a graph, the most known practice is to find an embedding that
preserves the neighborhood similarities or distances among the
nodes.

2.1.3 Graph Neural Network (GNN) Learning. A Graph Neural Net-
work (GNN) is a neural network, which takes a graph𝐺 as input and
generates a node embedding 𝑓 : 𝐺 →H for each of its nodes, from
the edge relationships. The most popular mechanism for learning
these embeddings is calledMessage-Passing. Under this mechanism,
in each layer of the GNN, for every single node, two operations are
performed: (1)Aggregation: the concerned node’s neighbors’ node
embeddings from the previous layer are collected and combined; (2)
Update: the combined neighborhood node embeddings, along with
the concerned node’s previous layer embedding, are used to calcu-
late the node’s embedding for this current layer. In this way, nodes
related to each other through multiple hops of the graph can influ-
ence each other in the latent embedding space. Formally, for a 𝐿-
layered GNN (𝐿 ∈ N), the calculation of the hidden representation
of a node 𝑣 ∈ 𝑉 in the 𝑙 ∈ {1, 2, . . . , 𝐿 − 1}, denoted as ℎ (𝑙 )𝑣 , (where
N𝑣 means the neighborhood of 𝑣 in𝐺 , i.e.N𝑣 = {𝑢 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸}),

is executed as follows:
𝑣
(𝑙−1)
N = AGGREGATE( ∀

𝑢∈
N𝑣

ℎ
(𝑙−1)
𝑢 ), ℎ (𝑙 )𝑣 = UPDATE(ℎ (𝑙−1)𝑣 , 𝑣

(𝑙−1)
N ) (1)

Where UPDATE, AGGREGATE are designated differentiable functions.
As an initial value, ℎ (0)𝑣 = X𝑣 is chosen. Notable Message-passing
GNNs include Graph Convolutional Network (GCN) [7], Graph
Attention Network (GAT) [16], Graph Isomorphism Network (GIN)
[24], Graph Sample and Aggregate (GraphSAGE) [4].

In this work, we focus on two of the most important graph
learning tasks: (1) Node Classification: a node’s attached class label
is predicted by training on a small subset of labeled nodes, and in
the process, node embeddings are learned; and, (2) Link Prediction:
we learn the embeddings of a node, and for a pair of nodes, we
train a neural network or any unsupervised method to find out
whether an edge exists between them. The defense side’s model is
based on node classification, whereas the attacker focuses on the
link prediction task.

2.2 Attacker Model
We now describe the threat model of our work in terms of the
attack model’s goal, knowledge, and capabilities. The model in
consideration is a GNN, representing a given graph (e.g., a social
network or online shopping recommender), trained for the node
classification task. At the last layer of the GNN, for each node
in the graph, we get a probability distribution (posterior) of the
candidate set of node classes. As an example, for a citation network,
the nodes representing the works maybe classified as either one
from the set {Representation Learning, Reinforcement Learning, Meta-
Learning}, and hence the posterior probability distribution will be a
three-dimensional vector representing a simplex.

2.2.1 Attacker Goal. The attacker will try to infer the graph struc-
ture, i.e., finding the existence of an edge between two given nodes.
If the attacker has knowledge about the nodes and for each pair
of nodes can infer whether there exists an edge between them,
then they can eventually reconstruct the whole graph. For social
or product recommendation networks, these edges can be of high
interest for malicious parties. The attack goal is neither under poi-
son settings (e.g., corrupting the graph), nor under evasion settings
(e.g., evading the defense). Rather, it is a reconstruction setting-
aiming to find out the graph’s structure.

2.2.2 Attacker Knowledge. The attacker’s knowledge can be dis-
cussed along two different aspects: the GNNmodel and the training
data/Graph.

The attacker is completely in the dark about the GNN model
parameter and hyperparameters. The attacker can access to the
posterior distribution of node classes from the GNN model.

In case of the data or the graph needed for training, the attacker
can face multiple scenarios as stated in [5], depending on the avail-
ability of notable Graph constituents. Namely, they are: (1) Target
Dataset’s Nodes’ Attributes F : The attacker sometimes can have
the knowledge about the attributes of the nodes F and labels of a small
subset of data used to train the GNN model. (2) target Dataset’s
Partial Graph A: A subset of graph edges can also be provided
to the attacker, to be used as ground truth edges to train the link
inference model and (3) Shadow Dataset D′: a shadow dataset
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can be provided to facilitate transfer learning to mimic the original
graph. The attacker trains a shadow target model from a graph with
own nodes and edges, from same or different domain. Depending on
the presence/absence of these three auxiliaries, 23 = 8 attacking
scenarios has been considered in [5]. The background knowledge
is represented as an ordered tuple K = (F ,A,D′), which can
have eight different values ranging from (×,×,×) (i.e., all absent) to
(F ,A,D′) (i.e., all present). All the possible settings are described
in Table 1. Also, in our experimental study (Section 5), we have
described all the attack scenarios before discussing our model’s
performance under these settings.

Table 1: Attacker Knowledge Configurations for Link Steal-
ing Attacks, as described in [5]

Attack
No.

Node
Attribute,
F

Partial
Graph,
A

Shadow
Dataset,
D′

Background
Knowledge,
K

Attack
No.

Node
Attribute,
F

Partial
Graph,
A

Shadow
Dataset,
D′

Background
Knowledge,
K

Attack-0 × × × (×, ×, ×) Attack-4 × ✓ ✓ (×,A,D′ )
Attack-1 × × ✓ (×, ×,D′ ) Attack-5 ✓ × ✓ (F, ×,D′ )
Attack-2 ✓ × × (F, ×, ×) Attack-6 ✓ ✓ × (F,A, ×)
Attack-3 × ✓ × (×,A, ×) Attack-7 ✓ ✓ ✓ (F,A,D′ )

2.2.3 Attacker Capabilities. The attacker can only run queries on
the GNN model to find out the posteriors of the predicted node
classes. Augmented with the background knowledge, as described
in Section 2.2.2, the attacker will try to infer the graph edges.

2.2.4 Attack Type. The attacker will try a similarity-based attack
by leveraging the heuristic that nodes with similar posterior class
distribution are expected to have edges between them. This type
of attack is called link stealing attack as per the literature [5]
and [26]. The attacker uses different similarity or distance met-
rics(e.g., cosine similarity, correlation coefficient) to find similar
node-pairs. Formally, given a black box GNNmodel G, the training
(target) graph nodes 𝑉 , the nodes’ posteriors from G ,the back-
ground knowledge K , and two nodes 𝑢, 𝑣 ∈ 𝑉 , the link stealing
attack allows one to determine whether there exists an edge in the
target graph between 𝑢 and 𝑣 .

3 Challenges and Solutions
The design of our approach, based on the idea of adding new, fake
nodes in the graph with crafted features to perturb the embedding
space enough to thwart the link-stealing attacker but be sufficiently
accurate enough for the model user, requires addressing several
challenges: (C1) Where should we augment the nodes? The 𝑘−layer
embeddings of a node depend on its 𝑘−hop neighbors. Therefore,
any change in the embeddings of its neighbor nodes also changes
the embedding of the node. Thus, we need to connect new nodes to
such nodes in the original graph that are already connected with a
significant number of nodes through a minimal number of hops. To
address this challenge, we apply spectral clustering [17] to partition
the graph into different clusters and find the cluster centers (the
node with the least intra-cluster average distance). Then, we add
edges from the new nodes to the cluster center. As a cluster center
itself is connected to many nodes with one or two hops, connecting
an edge from a new node to this node will help to perturb the
embeddings of the nodes in its proximity efficiently. (C2) What
should be an optimal bound for the number of new nodes? We need

to find the optimal number of new nodes so that each of them,
influencing their cluster, can collectively perturb the whole graph’s
embedding and posterior space. We hypothesize that this optimal
number depends on the graph’s density, which is roughly inversely
proportional to it. As in a dense graph, more nodes can be connected
in one or two hops in message-passing scheme for GNNs due to
higher number of edges, less cluster-center nodes are needed to
perturb the embedding and posterior spaces of neighborhood nodes.
We state and prove the theoretical result below:

Proposition 1. Let the Spectral Clustering Algorithm [17] be
applied on an unweighted graph 𝐺 = (𝑉 , 𝐸) in such a way that (i)
every cluster is equally (approximately) sized in terms of the number
of nodes, (ii) each node in a cluster is within the 𝐿−neighborhood of
other nodes in the same cluster for a fixed 𝐿 ∈ N, and (iii) the highest
degree possible within a cluster for a node is 𝐾 for a fixed 𝐾 ∈ N, then
to ensure the mentioned constraints, the number of clusters needed to
form, 𝑐 , is inversely proportional to the graph density 𝜎 , i.e.

𝑐 ∝ 1
𝜎

Proof. The number of nodes and edges in𝐺 are 𝑛 = |𝑉 |, 𝑒 = |𝐸 |,
respectively. Let the lowest and highest possible number of nodes
in a cluster be 𝑛𝑐𝑚𝑖𝑛 & 𝑛𝑐𝑚𝑎𝑥 , respectively. Then 𝑛 can be bounded
as,

𝑛𝑐
𝑚𝑖𝑛 ∗ 𝑐 ≤ 𝑛 ≤ 𝑛𝑐𝑚𝑎𝑥 ∗ 𝑐 (2)

Let the expected number of edges within a cluster to form a min-
imally connected component following the 𝐿-neighborhood and
𝐾−maximum degree assumption is 𝑒𝑐 . If each cluster is consid-
ered as a super-node, and these super-nodes are connected to form
minimum-spanning tree of clusters- then for a graph, there are
three kinds of edges formed: intra-cluster minimally constrained
connected component edges, inter-cluster minimum spanning tree
edges, and the extra inter-cluster edges (not necessary to form the
tree of clusters). As there are 𝑐 clusters, there will be 𝑐 − 1 inter-
cluster minimum-spanning tree edges. We can bound the number
of edges 𝑒 as,

𝑐 ∗ 𝑒𝑐 + (𝑐 − 1) ≤ 𝑒 (3)
To deduce the lower and upper bound for 𝑒𝑐 , we consider two cases
of the edge structure of the clusters. As a lower bound case, we
consider the minimum spanning tree of the nodes in a cluster; and
as an upper bound case, we consider the complete 𝐾 − 𝑎𝑟𝑦 tree of
the nodes. For the second case, let the highest degree (intra-cluster)
node be the root. Then there will be at most 𝐾 nodes connected
with it in the first level. In the next level, every node will have 𝐾 − 1
children (as the highest intra-cluster degree is 𝐾 and they already
have a parent), so there will be 𝐾 ∗ (𝐾 − 1) edges. As all the nodes
are within an 𝐿−neighborhood, the tree will have 𝐿 levels, and the
total number of edges will be 𝐾 +𝐾 ∗ (𝐾 − 1) +𝐾 ∗ (𝐾 − 1)2 + . . . +
𝐾 ∗ (𝐾 − 1) (𝐿−1) = 𝐾∗{ (𝐾−1)𝐿−1}

𝐾−2 = 𝑓𝑚𝑎𝑥 (𝐾, 𝐿). For the first case,
we cannot get an explicit formula for the number of edges in terms
of 𝐾, 𝐿 as it depends on the graph structure. Nevertheless, we will
denote it as 𝑓𝑚𝑖𝑛 (𝐾, 𝐿,𝐺). As both case denotes a tree, the number
of nodes will be 1 more than the number of edges- so 𝑛𝑐𝑚𝑎𝑥 =

1 + 𝑒𝑐𝑚𝑎𝑥 = 𝑓𝑚𝑎𝑥 (𝐾, 𝐿), 𝑛𝑐𝑚𝑖𝑛 = 1 + 𝑒𝑐𝑚𝑖𝑛 = 1 + 𝑓𝑚𝑖𝑛 (𝐾, 𝐿,𝐺), and
The density 𝜎 of a Graph is,
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𝜎 =
𝑒

𝑛 ∗ (𝑛 − 1) ≈
𝑒

𝑛2
. (4)

If every cluster is formed as the first case (minimum spanning
tree), then from Equations (2) to (4), the lowest bounded den-
sity will be 𝜎𝑚𝑖𝑛 ≈ 𝑒𝑚𝑖𝑛

(𝑛𝑚𝑖𝑛 )2 =
𝑐∗𝑒𝑐𝑚𝑖𝑛+(𝑐−1)
(𝑛𝑐𝑚𝑖𝑛∗𝑐 )2 =

𝑐∗(𝑒𝑐𝑚𝑖𝑛+1)−1
(𝑛𝑐𝑚𝑖𝑛∗𝑐 )2 =

𝑐∗𝑛𝑐𝑚𝑖𝑛−1
(𝑛𝑐𝑚𝑖𝑛∗𝑐 )2 ≈

𝑐∗𝑛𝑐𝑚𝑖𝑛

(𝑛𝑐𝑚𝑖𝑛∗𝑐 )2 = 1
𝑛𝑐

𝑚𝑖𝑛∗𝑐 = 1
𝑐∗𝑓𝑚𝑖𝑛 (𝐾,𝐿,𝐺 ) , and the high-

est boundwill be,𝜎𝑚𝑎𝑥 ≈ 𝑒𝑚𝑎𝑥

(𝑛𝑚𝑎𝑥 )2 =
𝑐∗𝑒𝑐𝑚𝑎𝑥+(𝑐−1)
(𝑛𝑐𝑚𝑎𝑥 ∗𝑐 )2 =

𝑐∗(𝑒𝑐𝑚𝑎𝑥+1)−1
(𝑛𝑐𝑚𝑎𝑥 ∗𝑐 )2 =

𝑐∗𝑛𝑐𝑚𝑎𝑥−1
(𝑛𝑐𝑚𝑎𝑥 ∗𝑐 )2 ≈

𝑐∗𝑛𝑐𝑚𝑎𝑥

(𝑛𝑐𝑚𝑎𝑥 ∗𝑐 )2 = 1
𝑛𝑐

𝑚𝑎𝑥 ∗𝑐 = 1
𝑐∗𝑓𝑚𝑎𝑥 (𝐾,𝐿) □

As from the assumptions, the Graph is fixed and so are the values
of 𝐾, 𝐿. So, 𝑓𝑚𝑖𝑛 (𝐾, 𝐿,𝐺), 𝑓𝑚𝑎𝑥 (𝐾, 𝐿) are both constants. Hence in
both cases, 𝑐 ∝ 1

𝜎
Therefore, if two graphs𝐺1,𝐺2 have densities 𝛿1, 𝛿2, respectively,

and defending 𝐺1 is achieved optimally with 𝑁 new nodes, then
𝐺2 should be augmented with approximately ⌊𝑁𝛿1

𝛿2 ⌋ nodes. (C3)
How can the competing objectives of optimizing model utility and
defending link-stealing attacks be achieved? The target GNNmodel’s
posteriors are optimized for the node prediction task. However, as
good as these posteriors are, homophily (edge endpoints having
the same labels) is usually found in graph datasets, which exposes
their vulnerability in similarity-based attacks. Thus, the posteriors
individually have to be optimized but jointly have to be misleading.
To address the competing objectives, we introduce a tri-level opti-
mization of augmented node features, target GNN parameters, and
surrogate attacker model parameters. We optimize augmentation
(and GNN parameters), along with surrogate attacker parameters,
interchangeably so that one model’s gradient feedback updates the
other one.

To summarize, our approach needs functionalities for graph
clustering and a multi-level optimization loop to maximize the
target model’s utility and defensive strength.

4 Modulewise Detailed Operation of NARGIS
In this section, we discuss each module separately and together to
form the workflow of NARGIS.

4.1 Augmentation Module
The Augmentation Module (see Figure 2a), takes the input graph, applies
spectral clustering on it, and returns the augmented graph with
new nodes and edges. In this module, the new nodes’ features are
still set at 0 as they have not been learned yet.

In NARGIS, we augment the graph𝐺 with new nodes and create
some edges from the newly added nodes to the original nodes.
Let 𝑛𝑛𝑒𝑤 be the number of newly added nodes in the graph 𝐺
and 𝑉𝑛𝑒𝑤 be the set of newly added nodes, then |𝑉𝑛𝑒𝑤 | = 𝑛𝑛𝑒𝑤 .
Let the node features and labels of newly augmented nodes be,
respectively, X𝑛𝑒𝑤 ∈ R𝑛𝑛𝑒𝑤×𝑑 and Y𝑛𝑒𝑤 ∈ {0, 1, . . . , 𝑐 − 1}𝑛𝑛𝑒𝑤×1 .
Also, let A𝑛𝑒𝑤 ∈ {0, 1}𝑛×𝑛𝑛𝑒𝑤 be the incidence matrix between the
old nodes and newly added ones, with,

[A𝑛𝑒𝑤 ] (𝑢,𝑣) = [∃ an edge(𝑢, 𝑣) for 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉𝑛𝑒𝑤 ] (5)

Let 𝐺𝑎𝑢𝑔 = (𝑉𝑎𝑢𝑔,X𝑎𝑢𝑔,Y𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑛𝑎𝑢𝑔, 𝑐) be the augmented
graph, where

𝑛𝑎𝑢𝑔 = 𝑛 + 𝑛𝑛𝑒𝑤 , 𝑉𝑎𝑢𝑔 = 𝑉 ∪𝑉𝑛𝑒𝑤 , |𝑉𝑎𝑢𝑔 | = 𝑛𝑎𝑢𝑔 (6)

X𝑎𝑢𝑔 =

[
X

X𝑛𝑒𝑤

]
, A𝑎𝑢𝑔 =

[
A A𝑛𝑒𝑤

A𝑇
𝑛𝑒𝑤 0

]
, Y𝑎𝑢𝑔 =

[
Y𝑛𝑒𝑤

]
(7)

Note that we train the GNNs in semi-supervised style [7], where
only a portion of nodes are labeled, and among them, train, vali-
dation and test splits are made. Thus, for Y𝑛𝑒𝑤 , we randomly set
the labels, as they will not be part of any labeled splits. For edge
augmentation, we use the Unnormalized Laplacian Based Algo-
rithm for Spectral Clustering [17], which finds the graph clusters
and their center nodes. We connect each new node with separate
cluster centers to form the new edges. Function 1 represents the

Function 1: getAugmentedGraph(𝐺)
Input :Graph𝐺 = (𝑉 ,X,Y,A, 𝑛, 𝑐 ) ;
Parameter :Number of new nodes to augment, 𝑛𝑛𝑒𝑤 ;
Output :Augmented Graph

𝐺𝑎𝑢𝑔 = (𝑉𝑎𝑢𝑔,X𝑎𝑢𝑔,Y𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑛𝑎𝑢𝑔, 𝑐 ) with no
features learned yet;

1 Cluster Center Nodes [𝑜1, 𝑜2, . . . , 𝑜𝑛𝑛𝑒𝑤 ] ← Spectral Clustering on
𝐺 as per the algorithm in [17];

2 𝑉𝑛𝑒𝑤 ← {𝑣1, 𝑣2, . . . 𝑣𝑛𝑛𝑒𝑤 }, New nodes with zeroes set as feature;
3 Form edge set 𝐸𝑛𝑒𝑤 ← {(𝑜1, 𝑣1 ), (𝑜2, 𝑣2 ), . . . , (𝑜𝑛𝑛𝑒𝑤 , 𝑣𝑛𝑛𝑒𝑤 ) };
4 𝑋𝑛𝑒𝑤 ← {0, 0, 0, . . . , 0}, 𝑛𝑛𝑒𝑤 zero feature vectors;
5 A𝑛𝑒𝑤 ← form adjacency matrix as per Equation (5) using

𝑉 ,𝑉𝑛𝑒𝑤 & 𝐸𝑛𝑒𝑤 ;
6 Y𝑛𝑒𝑤 ← 𝑛𝑛𝑒𝑤 randomly assigned labels from 0, 1, . . . , 𝑐 − 1;
7 Form augmented graph𝐺𝑎𝑢𝑔 = (𝑉𝑎𝑢𝑔,X𝑎𝑢𝑔,Y𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑛𝑎𝑢𝑔, 𝑐 )

using Equations (6) and (7) ;
8 return𝐺𝑎𝑢𝑔 ;

functionality of the Augmentation Module.

4.2 Tri-Optimization based Feature Learning
Module

4.2.1 ModuleWorkflow Summary. The Tri-Optimization based Feature

Learning Module is the most crucial module. Its goal is to learn the
augmented nodes’ features so that their existence in a GNN learning
step will perturb the embedding and posterior space of the original
graph’s nodes. This module takes both the unlearned augmented
graph (from the Augmentation Module) and main graph (training) edges
and their labels (existent/non-existent) as inputs. The module con-
sists of our target GNN model (Feature Learning Sub-Module) and a
surrogate attacker model (Surrogate Attacker Sub Module)- connected
through a tri-optimization-based learning loop (see Figure 2a). The
detailed process is shown in Figure 2b. The target GNN model is
trained for the node prediction task in the augmented graph in
Stage 1. Consequently, the learned posteriors are sent to the sur-
rogate attacker model, which combines the surrogate query edges
with them to form an edge feature and then the attacker model is
trained to infer the existence of the edge (Stage 2). Gradient feed-
back from this model is sent again to the Feature-Learning sub-module

so that the augmented nodes’ features are updated through gradient
descent, whereas the GNN parameters are kept frozen (Stage 3).
Finally, the module returns the learned features of the augmented
nodes. It is to be noted that the Surrogate Attacker Sub-Module is
trained only once, unlike the Feature Learning Sub-Module which is
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Figure 2: System Overview of NARGIS

trained several times. Our intuition behind this learning strategy is
that the attacker’s model is targeted to learn the implicit bias that
similar nodes from the edges mainly- and in the first training of the
Feature Learning Sub-Module, similar nodes’ posteriors are trained to
be similar. Hence, the surrogate attacker takes those posteriors to
integrate the inductive bias regarding the homophily. But in later
part of the trainings, when the Feature Learning Sub-module also gets
gradient feedback to perturb the embedding and posterior space
for the defense against attacks, training the surrogate attackers
on those perturbed posteriors again will lead the attacker to be
adaptive, which is not under our threat model settings. Making
the surrogate attacker adaptive will unnecessarily weaken the de-
fense’s power, as no matter what gradient update is done in the
Feature Learning Sub-module, the Surrogate Attacker Sub-module will al-
ways have an answer for that and the defensive objective will not
be achieved. This procedure is elaborated in Function 2. Finally,
this module returns the perturbed posteriors.

4.2.2 Module Workflow Details. In the subsequent discussions,
we useD𝑄 to denote the training edges, both positive/existent
and sampled negative/non-existent edges from the main
graph.

D𝑄 = { (𝑢, 𝑣, 𝑦) |𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 , 𝑦 = 𝐴[𝑢 ] [𝑣 ] } (8)

Target GNN Model. Let 𝑓 (𝐺 ;𝜃 𝑓 ) : 𝐺 → [0, 1]𝑛×𝑐 be the target
model, which takes a graph 𝐺 as input and outputs the probability
distribution of the nodes’ labels (i.e., posteriors). This is the model
NARGIS defends. The set of learnable model parameters are denoted
as 𝜃 𝑓 (they include both the embedding and classification layer
parameters).

Augmented Target GNN Model. Let 𝑓𝜏 (𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 ) : 𝐺𝑎𝑢𝑔 →
[0, 1]𝑛𝑎𝑢𝑔×𝑐 be the augmented target GNN model, which takes the
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augmented graph 𝐺𝑎𝑢𝑔 as input and outputs the perturbed proba-
bility distribution (posteriors) of the nodes’ labels. This model is
used exclusively to learn the augmented node features. The set of
learnable target GNN model parameters are denoted as 𝜃 𝑓𝜏 , and the
associated learnable augmented node features are: 𝜃𝜏 .

Edge Feature Generator. This procedure takes the node posteriors
from the target GNN model and surrogate query edges to form
the edge features for the surrogate attacker model. Formally, let
𝜒 = 𝑓𝜏 (𝐺𝑎𝑢𝑔;𝜃 𝑓 , 𝜃𝜏 ) be the node posteriors from the augmented
target model. Then, the Edge Feature Generator can be denoted as a
function 𝑘 (𝜒,D𝑄 ) → R |D𝑄 |×𝑑𝑎 , where 𝑑𝑎 be the surrogate attack
model input dimension.

Surrogate AttackModel. We refer to𝑔(𝑢, 𝑣, 𝑘 (𝜒,D𝑄 );𝜃𝑔) → [0, 1]
as Surrogate Attack Model for link prediction between two nodes
𝑢, 𝑣 in a (non-)existing edge inD𝑄 . 𝜃𝑔 denotes the set of learnable pa-
rameters of the model. It takes the surrogate dataset and the formed
edge features as input for learning.

Module Optimization Objective. The goal is to learn the features
of the augmented nodes. As the aim of any Learning-based model’s
defense is two-fold (providing utility while defending from attacks),
to assist the learning of features, we learn the target model for the
node classification task (to help the learnable nodes improve the
utility) as well as a surrogate attacker model (to help the learnable
nodes be robust against attacks).

Formally, let the node classification loss of the aforementioned
Augmented Target GNN model 𝑓𝜏 (.) be L𝑐𝑙𝑎𝑠𝑠 (𝐺𝑎𝑢𝑔;𝜃 𝑓𝜏 , 𝜃𝜏 ). We
also introduce an edge classification loss of the Surrogate Attack
Model 𝑔(.) as L𝑎𝑡𝑡𝑎𝑐𝑘 (D𝑄 , 𝜒 ;𝜃𝑔). Lastly, based on all those learn-
able parameters, our loss of interest is the loss dedicated to the node
augmentation-based defense, L𝑑𝑒𝑓 𝑒𝑛𝑠𝑒 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑔, 𝜃 𝑓𝜏 , 𝜃𝜏 ). The
detailed definition of the loss functions are given in what follows.

Classification loss. For augmented target GNN model’s classifica-
tion loss L𝑐𝑙𝑎𝑠𝑠 , we use the negative log-likelihood loss:

L𝑐𝑙𝑎𝑠𝑠 (𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 ) := E𝑢∼𝑉 [−𝑙𝑜𝑔 ( [ 𝑓𝜏 (𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 ,𝜏 ) ] (𝑢,Y𝑢 ) ) ] (9)

Here, we obtain the posteriors from the augmented target GNN
model, and for each node-label pair (𝑢,Y𝑢 ) ∈ 𝑉𝑎𝑢𝑔 × Y𝑎𝑢𝑔 of the
graph 𝐺𝑎𝑢𝑔 = (𝑉𝑎𝑢𝑔,X𝑎𝑢𝑔,Y𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑛𝑎𝑢𝑔, 𝑐), we take the proba-
bility value of the true node label, and take the expected value of
negative log-likelihood over all the nodes in the augmented graph
that belongs actually to the original graph (as 𝑉 ⊂ 𝑉𝑎𝑢𝑔).

Surrogate Attacker Loss. For the surrogate attack model’s link
prediction loss, we use the binary cross-entropy loss:

L𝑎𝑡𝑡𝑎𝑐𝑘 (D𝑄 , 𝜒 ;𝜃𝑔 ) = L𝑎𝑡𝑡𝑎𝑐𝑘 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑔, 𝜃 𝑓𝜏 , 𝜃𝜏 )
:= E(𝑢,𝑣,𝑦)∼D𝑄

[L𝐵𝐶𝐸 (𝑔 (𝑢, 𝑣, 𝑘 (𝜒,D𝑄 ) ;𝜃𝑔 ), 𝑦) ]
(10)

where 𝑔(𝑢, 𝑣, 𝑘 (𝜒,D𝑄 );𝜃𝑔) denotes the probability of an edge
between nodes 𝑢, 𝑣 ∈ 𝑉 from the surrogate model 𝑔 by the attacker
and 𝑦 is a binary variable indicating whether there is an edge
between them. Remember that as 𝜒 is dependent on 𝐺𝑎𝑢𝑔, 𝜃 𝑓𝜏 , 𝜃𝜏 ,
this loss (and other losses stated later) depends on them too.

Defender Loss. For the defender, constructing the loss is non-
trivial, as we have to integrate different competing objectives. We
construct four different losses for aggregating the Defender loss.
(1) Distribution Alignment Loss. First, our goal is that the per-
turbed posterior distribution from the augmented model must be
quite different from the original GNN’s posterior distribution so
that a similarity-metric-based attacker gets confused. So, we have to
integrate a loss, which will try to maximize the difference between
the posteriors 𝜒𝑢 , 𝜒𝑣 for the nodes 𝑢, 𝑣 , respectively, in an existent
edge (𝑢, 𝑣). The Distribution Alignment loss for Defender is defined
as

L𝑑𝑖𝑠𝑡 (D𝑄 , 𝜒 ) = L𝑑𝑖𝑠𝑡 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 )
:= E(𝑢,𝑣,𝑦=1)∼D𝑄

[−𝑆ℎ𝑎𝑛𝑜𝑛𝐷𝑖𝑣 (𝜒𝑢 | |𝜒𝑣 ) ]
(11)

Here, 𝑆ℎ𝑎𝑛𝑜𝑛𝐷𝑖𝑣 (.) is the Jensen-ShanonDivergence [20], which
is a symmetric version of the Kullback-Leibler (KL) Divergence. We
use Jensen-Shanon instead of KL, to make the distribution loss
symmetric for the edge endpoints.
(2) Correlation Distance Loss. Second, to deviate the perturbed
posterior distribution from the augmented model more from the
original GNN’s posterior distribution, we integrate another loss,
which will try to minimize the correlation similarity between the
posteriors 𝜒𝑢 , 𝜒𝑣 for the nodes 𝑢, 𝑣 , respectively, in an existent
edge (𝑢, 𝑣). Whereas the L𝑑𝑖𝑠𝑡 is optimized to make the posterior
vectors dissimilar in probability simplex, this correlation-based loss
is optimized for the same task in the vector space. The Correlation
Distance loss for Defender is defined as:

L𝑐𝑜𝑟𝑟 (D𝑄 , 𝜒 ) = L𝑐𝑜𝑟𝑟 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 )

:= E(𝑢,𝑣,𝑦=1)∼D𝑄
[−{1 − 𝜒𝑢 · 𝜒𝑣

| | (𝜒𝑢 − 𝜒𝑢 ) | |2 | | (𝜒𝑣 − 𝜒𝑣 ) | |2
} ] (12)

Here, we have described the formula for adjusted cosine similar-
ity which is used interchangeably with correlation similarity. To
convert it into a distance, we deduct the quantity from 1.
(3) Alignment Calibration Loss. Thirdly, while optimizing for
the 𝜆𝑑𝑖𝑠𝑡 , the original posterior can be perturbed in such a way that
the main task can be derailed, i.e., misclassification happens. This
happens if, after the perturbation, the ground truth label class’s
probability is not higher than the maximum one. So, we have to
integrate an alignment-based loss, too, which ensures that only
the class probabilities not representing the ground truth class are
perturbed. As the attacker’s aim is not the classification of nodes,
this does not decrease much the strength of the defense. Therefore,
Alignment Calibration loss for defender is defined as

L𝑎𝑙𝑖𝑔𝑛 (D𝑄 ,Y, 𝜒 ) = L𝑎𝑙𝑖𝑔𝑛 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 )
:= E(𝑢,𝑣,𝑦)∼D𝑄

[−𝑙𝑜𝑔 ( [𝜒𝑢 ]Y𝑢 ) − 𝑙𝑜𝑔 ( [𝜒𝑣 ]Y𝑣 ) ]
(13)

(4) Misclassification loss. Last, remember that merely perturb-
ing the posterior vector is not our aim. We have to ensure that
the attacker cannot predict the links’ existence. So, we have to
perturb in such a way that the posteriors from the model fool the
surrogate model enough to misclassify the links. So, we define the
misclassification loss by the attacker for defender as:
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L𝑚𝑖𝑠𝑠 (D𝑄 , 𝜒 ;𝜃𝑔 ) = L𝑚𝑖𝑠𝑠 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑔, 𝜃 𝑓𝜏 , 𝜃𝜏 )
:= E(𝑢,𝑣,𝑦)∼D𝑄

[−𝑙𝑜𝑔 (1 − 𝑔 (𝑢, 𝑣, 𝑘 (𝜒,D𝑄 ) ;𝜃𝑔 )𝑦 ) ]
(14)

Finally, taking the linear combination of the losses, we have the
Defender Loss,

L𝑑𝑒𝑓 𝑒𝑛𝑠𝑒 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑔, 𝜃 𝑓𝜏 , 𝜃𝜏 )

:=


𝜆𝑚𝑖𝑠𝑠

𝜆𝑎𝑙𝑖𝑔𝑛
𝜆𝑑𝑖𝑠𝑡
𝜆𝑐𝑜𝑟𝑟


𝑇 
L𝑚𝑖𝑠𝑠 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑔, 𝜃 𝑓𝜏 , 𝜃𝜏 )
L𝑎𝑙𝑖𝑔𝑛 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 )
L𝑑𝑖𝑠𝑡 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 )
L𝑐𝑜𝑟𝑟 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 )


(15)

where 𝜆𝑚𝑖𝑠𝑠 , 𝜆𝑎𝑙𝑖𝑔𝑛, 𝜆𝑑𝑖𝑠𝑡 , 𝜆𝑐𝑜𝑟𝑟 are hyperparameters to be set
on.

Tri-Optimization Based Learning Loop. At first, we need to learn
the parameters 𝜃 𝑓𝜏 for the primary task of node classification. Then
we learn the surrogate model parameters 𝜃𝑔 to measure up the
optimal performance of the attacker, which the defense has to
match. After this, we learn the augmentation parameters 𝜃𝜏 to step
up against the optimized attacker. The tri-optimization objective
can be formalized as follows:

argmin𝜃𝜏 L𝑑𝑒𝑓 𝑒𝑛𝑠𝑒 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃∗𝑔, 𝜃 ∗𝑓𝜏 , 𝜃𝜏 )
𝑠.𝑡 .𝜃∗𝑔 = argmin𝜃𝑔 L𝑎𝑡𝑡𝑎𝑐𝑘 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑔, 𝜃 ∗𝑓𝜏 , 𝜃𝜏 )

𝑠.𝑡 .𝜃∗
𝑓𝜏

= argmin𝜃 𝑓𝜏 L𝑐𝑙𝑎𝑠𝑠 (𝐺𝑎𝑢𝑔 ;𝜃 𝑓𝜏 , 𝜃𝜏 )
(16)

Function 2 shows the procedure for updating the model parame-
ters. We change the learning step a bit from what was stated before.
We update the node augmentation parameters 𝜃𝜏 twice: once af-
ter classification (different from Section 4.2.1, “semi”-update) and
again at the last step after the surrogate model (as stated in Sec-
tion 4.2.1, “final”-update). As the node augmentation parameters
also take part in the classification task, the loss classification gradi-
ents should also be propagated through them. Otherwise, it would
downgrade the classification performance of the augmented model.
We also pass some epoch-related hyperparameters to run the fea-
ture (semi and final) and surrogate updates. Besides, as a learnable
feature layer abstraction, we introduce a vector of the same size as
number of new nodes×Feature Dimension. The augmented features
are always set as zero. So, before passing to the GNN, we add the
learnable features to the fixed augmented zero features. Then, they
are concatenated with the fixed original node features before being
passed to the model. Hence, backpropagation is done during the
addition operation of the learnable layer. The whole optimization
loop is shown in Figure 2b.

4.3 Algorithm: NARGIS
Combining all the modules and functions stated above, we train
NARGIS. The training algorithm has been shown in Algorithm 1
(and also for reference in Figure 2a).

5 Evaluation
In this section, we describe the datasets, models, attacks and metrics
to evaluate our model’s performances.

Function 2: runTriOptimizationBasedFeatureLearning(𝐺𝑎𝑢𝑔,D𝑄 )
Input :Augmented Graph

𝐺𝑎𝑢𝑔 = (𝑉𝑎𝑢𝑔,X𝑎𝑢𝑔,Y𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑛𝑎𝑢𝑔, 𝑐 ) with no
features learned yet;
Surrogate Query Edge Dataset D𝑄 ;

Parameter :number of epochs 𝜂𝑜𝑢𝑡𝑒𝑟 , 𝜂𝑐𝑙𝑎𝑠𝑠 , 𝜂𝑠𝑢𝑟𝑟 , 𝜂𝑑𝑒𝑓 ;
Output :Learned Augmented Graph,

𝐺𝜏
𝑎𝑢𝑔 = (𝑉𝑎𝑢𝑔,X𝜏

𝑎𝑢𝑔,Y𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑛𝑎𝑢𝑔, 𝑐 ) ;
1 Initiate 𝜃 0𝑔, 𝜃 0𝑓𝜏 , 𝜃

0
𝜏 ;

2 for 𝑡 = 0 to 𝜂𝑜𝑢𝑡𝑒𝑟 − 1 do
/* Stage 1: Learn Classification Model */

3 𝜃 0
𝑓𝜏
, 𝜃 0𝜏 ← 𝜃𝑡

𝑓𝜏
, 𝜃𝑡𝜏 ;

4 for 𝑡𝑐 = 0 to 𝜂𝑐𝑙𝑎𝑠𝑠 − 1 do
5 Calculate L𝑐𝑙𝑎𝑠𝑠 (𝐺𝑎𝑢𝑔 ;𝜃𝑡𝑐𝑓𝜏 ,𝜃

𝑡𝑐
𝜏 ) using Equation (9);

6 𝜃
𝑡𝑐+1
𝑓𝜏

, 𝜃
𝑡𝑐+1
𝜏 ← Update using back-prop from

L𝑐𝑙𝑎𝑠𝑠 (𝐺𝑎𝑢𝑔 ;𝜃𝑡𝑐𝑓𝜏 ,𝜃
𝑡𝑐
𝜏 ) ;

7 end
/* Feature Learner Semi-Update */

8 𝜃𝑡+1
𝑓𝜏
, 𝜃

𝑡+ 12
𝜏 ← 𝜃

𝜂𝑐𝑙𝑎𝑠𝑠
𝑓𝜏

, 𝜃
𝜂𝑐𝑙𝑎𝑠𝑠
𝜏 ;

9 if 𝑡 == 0 then
/* Stage 2: Learn Surrogate Attacker Model */

10 𝜃 0𝑔 ← 𝜃𝑡𝑔 ;
11 for 𝑡𝑠 = 0 to 𝜂𝑠𝑢𝑟𝑟 − 1 do
12 Calculate L𝑎𝑡𝑡𝑎𝑐𝑘 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑡𝑠𝑔 , 𝜃𝑡+1𝑓𝜏

, 𝜃
𝑡+ 12
𝜏 ) using

Equation (10);
13 𝜃

𝑡𝑠+1
𝑔 ← Update using back-prop from

L𝑎𝑡𝑡𝑎𝑐𝑘 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑡𝑠𝑔 , 𝜃𝑡+1𝑓𝜏
, 𝜃

𝑡+ 12
𝜏 ) ;

14 end
/* Surrogate Attacker Update */

15 𝜃𝑡+1𝑔 ← 𝜃
𝜂𝑠𝑢𝑟𝑟
𝑔 ;

16 end
17 else
18 𝜃𝑡+1𝑔 ← 𝜃𝑡𝑔
19 end

/* Stage 3 Learn Augmented Features */

20 𝜃 0𝜏 ← 𝜃
𝑡+ 12
𝜏 ;

21 for 𝑡𝑑 = 0 to 𝜂𝑑𝑒𝑓 − 1 do
22 Calculate L𝑑𝑒𝑓 𝑒𝑛𝑠𝑒 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑡+1𝑔 , 𝜃𝑡+1

𝑓𝜏
, 𝜃

𝑡𝑑
𝜏 ) using

Equation (15);
23 𝜃

𝑡𝑑+1
𝜏 ← Update using back-prop from
L𝑑𝑒𝑓 𝑒𝑛𝑠𝑒 (D𝑄 ,𝐺𝑎𝑢𝑔 ;𝜃𝑡+1𝑔 , 𝜃𝑡+1

𝑓𝜏
, 𝜃

𝑡𝑑
𝜏 ) ;

24 end
/* Feature Learner Final Update */

25 𝜃𝑡+1𝜏 ← 𝜃
𝜂𝑑𝑒𝑓
𝜏 ;

26 end
/* 𝜃

𝜂𝑜𝑢𝑡𝑒𝑟
𝜏 is the learned augmented node features */

27 X𝜏
𝑎𝑢𝑔 ← replace X𝑛𝑒𝑤 from Xaug in Equation (7) with 𝜃𝜂𝑜𝑢𝑡𝑒𝑟𝜏 ;

28 return𝐺𝜏
𝑎𝑢𝑔 = (𝑉𝑎𝑢𝑔,X𝜏

𝑎𝑢𝑔,Y𝑎𝑢𝑔,A𝑎𝑢𝑔, 𝑛𝑎𝑢𝑔, 𝑐 )

5.1 Experimental Setup
5.1.1 Datasets. We evaluate our models and attacks on three pop-
ular Graph datasets: Cora, Citeseer, Pubmed [25]. These datasets
are citation datasets used for benchmarking GNN models [7]. The
nodes of the datasets represent publications, and links denote their
citations. Cora and Citeseer node features are 0/1 vectors repre-
senting the absence/presence of a particular word or tag in a fixed
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Algorithm 1: NARGIS
Input :Graph𝐺 = (𝑉 ,X,Y,A, 𝑛, 𝑐 ) ;
Parameter :Number of new nodes to augment, 𝑛𝑛𝑒𝑤 ;

Set Threshold 𝜁 ;
number of epochs 𝜂𝑜𝑢𝑡𝑒𝑟 , 𝜂𝑐𝑙𝑎𝑠𝑠 , 𝜂𝑠𝑢𝑟𝑟 , 𝜂𝑑𝑒𝑓 ;

Output :Perturbed Node Posteriors, Φ ∈ [0, 1]𝑛×𝑐
/* Augmentation Module-Function 1 */

1 Augmented Graph,𝐺𝑎𝑢𝑔 ←getAugmentedGraph (𝐺 ) ;
2 Training Edge Dataset, D𝑄 ← Edges, sampled negative edges and

edge labels from (𝐺 ) ;
/* Tri-Optimization based Feature Learning

Module-Function 2 */
3 Augmented Graph with Learned Features,𝐺𝜏

𝑎𝑢𝑔 ←
runTriOptimizationBasedFeatureLearning (𝐺𝑎𝑢𝑔,D𝑄 ) ;

/* Get Perturbed Posteriors from the Defense ingrained
GNN */

4 Φ𝑎𝑢𝑔 ← 𝑓𝜏 (𝐺𝜏
𝑎𝑢𝑔 ) ;

/* Return only the main graph part */
5 Perturbed (Main Graph) Node Posteriors, Φ← Φ𝑎𝑢𝑔 [: 𝑛, :];
6 return 𝜙

dictionary. Pubmed features are weighted TF-IDF vectors for a
vocabulary.
Dataset Configuration for Our Learning: For training each
dataset for node classification, we have followed the train, valida-
tion, test split settings from [7], where (for example,) for training
the Cora Dataset only 20 nodes per class were used, whereas the
dataset has 2,708 nodes. While training NARGIS and evaluating the
attacks, where the edges form an important part of the training,
we at first split the graph based on 70-10-20% train-validation-split
of the nodes, and then on the split graph, perform edge split on
the positive edges with the same ratio. As stated in [5, 7], we sam-
pled the same number of negative edges for each split. We trained
NARGIS on the train edges (positive and negative), validated on
validation edges (positive and negative), and tested the attacks on
test split edges (positive and negative). All the graphs are trained
on transductive settings, where some of the nodes are labeled and
training is done on them, while node classification is done on the
rest unlabeled nodes.

5.2 Software and Hardware Settings
Wehave used Pytorch ([13]), Pytorch Geometric ([2]) andNetworkX
([3]) for the implementation. We ran our experiments on a server
with 3 NVIDIA GeForce RTX 3090 GPUs, totaling 72 GB.

5.3 Node Classification GNN models and
hyperparameters

As GNN node classification model, we have used three message-
passing GNNs for evaluation: GCN [7], GAT [16] and SAGE [4]. All
of the models have two convolution layers with their respective
message-passing mechanisms. The dimension of the convolution
layers are 16. We also used dropout layers after each convolution
layer with 𝑝 = 0.5. The first convolution layers had ReLU activation,
and the last convolution layer, which is also the output layer, had
softmax activation. Every GNN were trained for 200 epochs with
ADAM [6] optimizer, with learning rate 0.005 and weight decay
rate of 5 × 10−4. After every 10 epochs, we ran validation to find

the validation loss, and the model with the least validation loss was
saved.

5.4 Cluster Numbers
Previously, in Section 3, we have discussed that the cluster num-
ber has to be inversely proportional to the Graph Density. We
have calculated the graph density of Cora, Citeseer and Pubmed
as 0.00144, 0.000823, 0.000228, respectively. Their inverse ratios are:
1 : 1.75 : 6.3 = 10 : 17.5 : 63. So we set cluster numbers (nearby
rounded as multiples of 10) 10, 20, 60 for Cora, Citeseer and Pubmed,
respectively.

5.5 Tri-Optimization Based Module’s
Hyperparameters

For every GNN model with basic (unguarded) settings, the corre-
sponding augmented GNN model also had the same configuration
and convolution layers. The number of epochs 𝜂𝑜𝑢𝑡𝑒𝑟 , 𝜂𝑐𝑙𝑎𝑠𝑠 , 𝜂𝑑𝑒𝑓
in Function 2 in Section 4, are set as 10, 200, 50. For surrogate learn-
ing, we set the batch size of 512 for training edge set and set 𝜂𝑠𝑢𝑟𝑟
as the number of epochs needed to learn the whole set of training
edges. Classification, surrogate, and defense Learning models are
optimized using Adam [6] with learning rate 0.01, 0.001 and 0.001,
respectively. Both classification and defense learning have weight
decay of 5 × 10−4. The surrogate attacker model is a learnable ma-
trix of dimension class number × hidden dimension (set as 10). We
multiply the posteriors from the endpoints with the matrix to get
two vectors, and then we take the sigmoid of their dot product. The
loss hyperparameters 𝜆𝑚𝑖𝑠𝑐 , 𝜆𝑎𝑙𝑖𝑔𝑛 , 𝜆𝑑𝑖𝑠𝑡 and 𝜆𝑐𝑜𝑟𝑟 are set as 4, 0.8,
2 and 0.6 through grid search, respectively.

5.6 Attack Models
For the Attack Models, we have used the same settings as described
in [5], for supervised attacker, reference models, shadow GNN and
shadow reference models. The supervised attacker Model is an MLP
with three hidden layers of 32 dimension, which is trained for 50
epochs with learning rate 0.005 with Adam. Both the reference
and shadow reference model for the Attacker are MLPs with two
hidden layers with 64 and 32 nodes, which is trained for 50 epochs
with Adam optimizer of learning rate 0.01 and weight decay as
same. The main and shadow reference models are used for the
formation of features for the edges from the posteriors of the nodes
from the main and shadow dataset, respectively. The shadow GNN
model for learning on shadow dataset is a GCN, which has the
same architecture as the classification model, except the hidden
dimension is 32 and it is trained for 100 epochs. Shadow GNN is
trained to apply transfer learning in four forms of attacks (Attack-1,
4, 5 and 7).

5.7 How to Interpret the Experiments
Combining Tables 3 and 4, we have discussed about ten tasks: (1)
Node prediction, (2-9) eight forms of Link Stealing Attacks, (10)
LinkTeller Attack. For the first task, we want the performance under
the defense model to be decreased as low as possible. For the rest
of the nine tasks, we want the performance of the attack against
the defense model to be decreased as much as possible.
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A good defensive model has higher node prediction accuracy (in-
dicating lower fidelity loss) and lower AUC (higher attack thwarted).

We also calculated a loss concerning each metric’s Baseline (Un-
defended) model. For accuracy, the loss w.r.t. the baseline model
should be as low as possible. For AUC, the loss w.r.t. the baseline
model should be as high as possible.

Themodels markedwith a long cross (†) are tuned for the highest
fidelity/node prediction accuracy. So, their tradeoff is lower privacy
(Higher AUC). In contrast, the models marked with an asterisk (*)
are tuned for the highest privacy (lower AUC), where the tradeoff
is possibly lower fidelity.

5.8 Metrics
For the node prediction task, we have used accuracy as our perfor-
mance metric. For link stealing task evaluation, as per the works
of [5, 9, 22, 30], we have used AUC (Area under ROC Curve) met-
ric. This metric is used for two reasons: (1) it is safe from class
imbalance issue, unlike precision or recall (2) For unsupervised clas-
sifications where no labels are present, and we have to decide the
label comparing with a threshold, AUC can denote the probability
that, under any set threshold, a randomly selected positive edge
node pair will have higher probability than a randomly selected
negative edge node pair. If all node pairs are ranked randomly, AUC
will be 0.5. Each evaluation were run three times with same seed
for reproducibility, and the mean value was reported. Also, we have
reported the accuracy and AUC loss compared to the Basic (Unde-
fended) model. Moreover, as Attack-0 settings have no knowledge
available for the attackers, it is considered as the most trivial form
of attack. Hence, our tunings were done considering this trivial
attack’s performance, as the models are at least expected to defend
Attack-0 , the most trivial one.

5.9 Baseline Models
For baseline evaluation, we have chosen two differential privacy
(DP) based defense models, EdgeRand and LapGraph, from [22].
We have chosen three versions of them, with varying DP parame-
ter 𝜖 (lower value indicates higher privacy, higher value indicates
higher fidelity): EdgeRand (𝜖 = 6) , LapGraph (𝜖 = 6) and LapGraph
(𝜖 = 0.1) . It is to be noted that, as these models have trade-offs
between fidelity and privacy, for the sake of comparison we will
consider both cases. In each configuration of a particular GNN
model and a dataset, the DP model marked with (†) is the DP model
with highest prediction accuracy (denoted onwards as DP-HFP :
DP Defense with Highest Fidelity Preferred). Also, the DP model
marked with (∗) is the one with lowest Attack-0 AUC (denoted
onwards as DP-HPP : DP Defense with Highest Privacy Preferred).
For example, in Table 3 for Cora dataset with SAGE GNN model,
EdgeRand (𝜖 = 6) is the DP-HFP and LapGraph (𝜖 = 0.1) is the
DP-HPP.

5.10 Tuned NARGIS
Considering fidelity-privacy tradeoff, we have evaluated two more
versions of NARGIS whose 𝜆𝑎𝑙𝑖𝑔𝑛 are different from the original
one. Whereas the original NARGIS’s hyperparameters were tuned
for highest fidelity, NARGIS-DefTuned’s 𝜆𝑎𝑙𝑖𝑔𝑛 is adjusted to match
the concerning DP-HPP’s Attack-0 AUC performance. Additionally,

NARGIS-PredTuned’s 𝜆𝑎𝑙𝑖𝑔𝑛 is adjusted to match the concerning
DP-HFP’s Prediction performance. They are also marked in the
tables with (∗) and (†), respectively. The 𝜆𝑎𝑙𝑖𝑔𝑛 for each dataset and
GNN combinations are described in Table 2.

Table 2: Tuned Values for 𝜆𝑎𝑙𝑖𝑔𝑛 for NARGIS-PredTuned and
NARGIS-DefTuned

GNN Dataset

𝜆𝑎𝑙𝑖𝑔𝑛 tuned
for Highest

Node Prediction
(NARGIS-PredTuned)

𝜆𝑎𝑙𝑖𝑔𝑛 tuned
for Lowest

Attack:0 AUC
(NARGIS-DefTuned)

SAGE Cora 0.3 0.25
SAGE Citeseer 0.001 0.005
SAGE Pubmed 0.001 0.002

GCN Cora 2.0 1.0
GCN Citeseer 0.5 0.001
GCN Pubmed 0.15 0.1

GAT Cora 0.15 0.25
GAT Citeseer 0.002 0.001
GAT Pubmed 0.001 0.002

5.11 Performance Criteria
We have considered the Node Prediction Performance (Accuracy)
and the AUC of all the attacks (0-7) stated in [5] (further described
in Table 1) and LinkTeller attack from [22]. We have shown Node
prediction, Attack-0, 2, 3, 6; and LinkTeller performances together
in Table 3, as there is no shadow dataset involved. For shadow
dataset based attacks (Attack- 1,4,5,7), we have shown the results
in Table 4. Moreover, as stated in [5], Attack-0,2,3,6 had different
feature design schemes. For comparison, we chose the best feature
design for each attacks: Correlation distance, Posterior Distance, all
features combined and all features combined (again), respectively.

5.12 Performance Analysis: Node Prediction
For almost all dataset and GNN combinations, best node prediction
accuracies were achieved by NARGIS. Besides, the best accuracy
performances among other defenses in these combinations were
achieved by the tuned-versions of NARGIS. In GCN:Citeseer com-
bination, the highest accuracy was achieved by NARGIS-PredTuned.
It is to be noted that only in GAT:Citeseer, the second best perfor-
mance was achieved by a DP-HFP.

5.13 Performance Analysis: Singular Attacks
(Attack= 0, 2, 3, 6)

For Attack-0, in all datasets,NARGIS’s tuned variants have achieved
best performance for SAGE; but for GCN and GAT, it is the DP-
HPP who defended the best. In case of Attack-2, the finding is the
same ([5] used the correlation difference between posteriors as
the best feature for Attack-2 which is same as Attack-0, hence the
same performance). Moreover, for Attack-3, none of the variants
of NARGIS has been able to beat DP-HPP. Finally, for Attack-6,
DP-HPP has beaten others in most combinations, while being the
second best in cases where other DP based methods got the best
result. At first glance, it might seem that NARGIS or its variants
are not a good form of defense. But in hindsight, while considering
the node prediction accuracy (fidelity), they pose as very balanced
defense methods. For most of the cases where NARGIS and its
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variants came second or third-best, their defense performance were
not that far, and the fidelities were better.

5.14 Performance Analysis: LinkTeller
For LinkTeller ([22]), best performances were achieved by the DP
defenses designed to beat it. NARGIS or its variants could not
defend it better as LinkTeller focuses on the nodes’ influence on
each other more rather than exploiting their posterior proximities.
As our model has not included inter-node influence-based losses in
its design, it has not been able to show near-optimal performance
for LinkTeller.

5.15 Performance Analysis: Transfer Attacks
(Attack- 1, 4, 5, 7)

For SAGE based GNNmodel,NARGIS’s tuned versions have shown
superior performances for all dataset and shadow dataset combina-
tions for Attack-1,4,5,7. Even in Pubmed→ Citeseer combination
for Attack-7, the performance of tuned NARGIS’s are close to the
DP-HPP one. But for the GCN-based GNN model, it is always the
DP-based models that show the best defensive performances. For
GAT-based models, the performance is almost similar, except for
some optimal performances for Attack-7.

6 Discussion
In this work, we have introduced a Graph Modification attack as a
defensive measure against Link Stealing Attack, In the bigger pic-
ture, we investigated whether a form of attack (i.e., Modification)
can be introduced as a defensive measure for another form of at-
tack (i.e., inference). Unlike the previous DP-based approaches [22],
where the privacy of the graph was ensured through noise addition
in the adjacency matrix, i.e., modifying the edge set, our work mod-
ified (addition) in the node-set through a clustering and learning
based approach. The approach was focused on keeping up the fi-
delity even with higher privacy, unlike DP-based approaches where
there are trade-offs. From the performance analysis on different
combinations of GNN models, datasets, attack methods, DP-based
Defenses, NARGIS and its variants’ performances, we could figure
out some key findings:

• NARGIS and its variants have optimal performances mostly
for SAGE, and never for GCN.

• NARGIS and its variants, despite being the second best in
terms of defending in most cases, are actually the most
balanced form of fidelity-privacy trade-off, as they show
better accuracy performances for near-equal defensive per-
formances.

• NARGIS can preserve model fidelity better than DP-based
defenses for almost similar range of defense performance.

The limitations are:
• Not having optimal performances ubiquitous for all GNN

models
• Approaches are justified through the lens of experiments

and heuristics rather than theoretical proof
• Unlike for similarity-based attacks, the performances on

mutual influence-based LinkTeller Attack are not adequately
defended, as the model considers the posterior similarity

Table 3: Defence Performances on Node Prediction and all
singular Attacks (Attack-0, 2, 3, 6; LinkTeller). DP-based De-
fense and NARGIS Models marked with † and ∗ are tuned,
respectively, for high utility (Higher Node Prediction Accu-
racy) and high privacy (lower Attack-0 AUC).

Dataset Cora

GNN Defense Node
Prediction

Attack-0:
Correlation

Attack-2:
Posterior

Attack-3:
All

Attack-6:
All Linkteller

A
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↑
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ss
↓

A
U
C
↓
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↑

A
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C
↓
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↑

A
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C
↓
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↑

A
U
C
↓
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↑

A
U
C
↓

Lo
ss
↑

Basic 0.787 - 0.92 - 0.92 - 0.93 - 0.93 - 0.98 -
(†) EdgeRand(𝜖 = 6) 0.564 0.223 0.81 0.112 0.81 0.112 0.83 0.096 0.84 0.087 0.5 0.476
(∗) LapGraph(𝜖 = 0.1) 0.417 0.37 0.7 0.226 0.7 0.226 0.72 0.207 0.79 0.138 0.5 0.474

SAGE LapGraph(𝜖 = 6) 0.399 0.388 0.71 0.213 0.71 0.213 0.74 0.185 0.8 0.124 0.61 0.369
NARGIS 0.81 -0.023 0.86 0.067 0.86 0.067 0.86 0.069 0.88 0.052 0.97 0.01

(∗)NARGIS-DefTuned 0.513 0.274 0.65 0.272 0.65 0.272 0.76 0.168 0.81 0.113 0.96 0.013
(†) NARGIS-PredTuned 0.604 0.183 0.69 0.23 0.69 0.23 0.79 0.14 0.82 0.102 0.96 0.013

Basic 0.793 - 0.94 - 0.94 - 0.93 - 0.93 - 0.93 -
(†) EdgeRand(𝜖 = 6) 0.64 0.153 0.88 0.057 0.88 0.057 0.89 0.044 0.86 0.071 0.5 0.43
(∗)LapGraph(𝜖 = 0.1) 0.144 0.649 0.52 0.416 0.52 0.416 0.54 0.39 0.75 0.179 0.5 0.425

GCN LapGraph(𝜖 = 6) 0.302 0.491 0.67 0.272 0.67 0.272 0.69 0.245 0.79 0.137 0.59 0.336
NARGIS 0.852 -0.059 0.9 0.039 0.9 0.039 0.89 0.037 0.9 0.03 0.82 0.109

(∗) NARGIS-DefTuned 0.763 0.03 0.89 0.047 0.89 0.047 0.88 0.05 0.89 0.034 0.79 0.139
(†) NARGIS-PredTuned 0.746 0.047 0.89 0.05 0.89 0.05 0.89 0.044 0.9 0.033 0.78 0.146

Basic 0.748 - 0.92 - 0.92 - 0.91 - 0.92 - 0.8 -
(†) EdgeRand(𝜖 = 6) 0.399 0.349 0.73 0.188 0.73 0.188 0.74 0.174 0.8 0.111 0.5 0.296
(∗) LapGraph(𝜖 = 0.1) 0.125 0.623 0.52 0.4 0.52 0.4 0.54 0.368 0.75 0.165 0.51 0.289

GAT LapGraph(𝜖 = 6) 0.217 0.531 0.61 0.307 0.61 0.307 0.62 0.288 0.77 0.146 0.59 0.209
NARGIS 0.71 0.038 0.81 0.105 0.81 0.105 0.83 0.078 0.87 0.044 0.71 0.089

(∗) NARGIS-DefTuned 0.329 0.419 0.65 0.264 0.65 0.264 0.74 0.17 0.84 0.081 0.61 0.183
(†)NARGIS-PredTuned 0.289 0.459 0.63 0.286 0.63 0.286 0.72 0.186 0.83 0.086 0.66 0.141

Dataset Citeseer

Basic 0.687 - 0.93 - 0.93 - 0.94 - 0.94 - 0.99 -
EdgeRand(𝜖 = 6) 0.5 0.187 0.8 0.123 0.8 0.123 0.82 0.123 0.86 0.084 0.5 0.489
LapGraph(𝜖 = 0.1) 0.547 0.14 0.76 0.171 0.76 0.171 0.77 0.174 0.82 0.122 0.51 0.482

SAGE (∗)(†)LapGraph(𝜖 = 6) 0.553 0.134 0.75 0.182 0.75 0.182 0.76 0.181 0.82 0.12 0.57 0.418
NARGIS 0.584 0.103 0.75 0.178 0.75 0.178 0.83 0.111 0.86 0.081 0.97 0.015

(∗) NARGIS-DefTuned 0.495 0.192 0.66 0.266 0.66 0.266 0.81 0.132 0.84 0.102 0.97 0.015
(†) NARGIS-PredTuned 0.56 0.127 0.77 0.159 0.77 0.159 0.88 0.058 0.89 0.054 0.94 0.054

Basic 0.679 - 0.95 - 0.95 - 0.94 - 0.95 - 0.95 -
(†)EdgeRand(𝜖 = 6) 0.46 0.219 0.85 0.102 0.85 0.102 0.85 0.09 0.86 0.092 0.5 0.446
(∗)LapGraph(𝜖 = 0.1) 0.194 0.485 0.53 0.423 0.53 0.423 0.55 0.396 0.8 0.148 0.52 0.431

GCN LapGraph(𝜖 = 6) 0.262 0.417 0.64 0.31 0.64 0.31 0.65 0.29 0.81 0.136 0.57 0.373
NARGIS 0.463 0.216 0.82 0.127 0.82 0.127 0.86 0.088 0.9 0.047 0.86 0.089

(∗)NARGIS-DefTuned 0.185 0.494 0.71 0.24 0.71 0.24 0.77 0.178 0.84 0.109 0.84 0.103
(†) NARGIS-PredTuned 0.577 0.102 0.9 0.054 0.9 0.054 0.9 0.043 0.92 0.03 0.84 0.11

Basic 0.677 - 0.93 - 0.93 - 0.92 - 0.93 - 0.87 -
(†) EdgeRand(𝜖 = 6) 0.3 0.377 0.68 0.249 0.68 0.249 0.7 0.222 0.83 0.1 0.5 0.366
(∗)LapGraph(𝜖 = 0.1) 0.225 0.452 0.55 0.387 0.55 0.387 0.56 0.36 0.8 0.132 0.5 0.363

GAT LapGraph(𝜖 = 6) 0.286 0.391 0.65 0.286 0.65 0.286 0.65 0.27 0.81 0.118 0.58 0.286
NARGIS 0.626 0.051 0.89 0.045 0.89 0.045 0.9 0.025 0.91 0.017 0.77 0.097

(∗)NARGIS-DefTuned 0.238 0.439 0.68 0.253 0.68 0.253 0.8 0.124 0.88 0.048 0.66 0.208
(†) NARGIS-PredTuned 0.295 0.382 0.74 0.189 0.74 0.189 0.83 0.091 0.9 0.03 0.61 0.254

Dataset Pubmed

Basic 0.767 - 0.86 - 0.86 - 0.9 - 0.9 - 0.99 -
(†) EdgeRand(𝜖 = 6) 0.705 0.062 0.76 0.107 0.76 0.107 0.77 0.13 0.81 0.092 0.5 0.49
LapGraph(𝜖 = 0.1) 0.7 0.067 0.75 0.11 0.75 0.11 0.77 0.132 0.81 0.092 0.5 0.488

SAGE (∗)LapGraph(𝜖 = 6) 0.7 0.067 0.75 0.113 0.75 0.113 0.77 0.135 0.8 0.094 0.5 0.489
NARGIS 0.734 0.033 0.82 0.039 0.82 0.039 0.87 0.033 0.87 0.031 0.98 0.011

(∗)NARGIS-DefTuned 0.718 0.049 0.71 0.148 0.71 0.148 0.8 0.105 0.83 0.066 0.97 0.017
(†) NARGIS-PredTuned 0.578 0.189 0.71 0.151 0.71 0.151 0.79 0.111 0.83 0.064 0.96 0.032

Basic 0.785 - 0.87 - 0.87 - 0.89 - 0.86 - 0.93 -
EdgeRand(𝜖 = 6) 0.407 0.378 0.61 0.26 0.61 0.26 0.68 0.206 0.77 0.091 0.5 0.432

(∗)LapGraph(𝜖 = 0.1) 0.429 0.356 0.51 0.36 0.51 0.36 0.52 0.372 0.78 0.087 0.5 0.432
GCN (†) LapGraph(𝜖 = 6) 0.458 0.327 0.56 0.311 0.56 0.311 0.58 0.312 0.78 0.084 0.53 0.399

NARGIS 0.672 0.113 0.8 0.068 0.8 0.068 0.85 0.039 0.86 0.007 0.85 0.081
(∗)NARGIS-DefTuned 0.545 0.24 0.57 0.296 0.57 0.296 0.84 0.051 0.88 -0.011 0.82 0.107
(†) NARGIS-PredTuned 0.58 0.205 0.55 0.317 0.55 0.317 0.83 0.061 0.88 -0.015 0.8 0.129

Basic 0.769 - 0.85 - 0.85 - 0.89 - 0.89 - 0.9 -
(∗)EdgeRand(𝜖 = 6) 0.413 0.356 0.51 0.347 0.51 0.347 0.5 0.389 0.78 0.107 0.5 0.398
LapGraph(𝜖 = 0.1) 0.408 0.361 0.52 0.335 0.52 0.335 0.53 0.36 0.78 0.11 0.5 0.397

GAT (†) LapGraph(𝜖 = 6) 0.452 0.317 0.57 0.283 0.57 0.283 0.58 0.308 0.79 0.103 0.53 0.366
NARGIS 0.657 0.112 0.8 0.052 0.8 0.052 0.86 0.032 0.86 0.026 0.82 0.08

(∗) NARGIS-DefTuned 0.65 0.119 0.68 0.17 0.68 0.17 0.74 0.151 0.83 0.06 0.72 0.174
(†) NARGIS-PredTuned 0.641 0.128 0.68 0.178 0.68 0.178 0.74 0.15 0.84 0.054 0.71 0.19
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Table 4: Defence Performances on all transfer Attacks (Attack-1, 4, 5, 7). DP-based Defense and NARGIS Models marked with †
and ∗ are tuned, respectively, for high utility (Higher Node Prediction Accuracy) and high privacy (lower Attack-0 AUC).

Dataset−→Shadow Dataset Cora −→ Citeseer Cora −→ Pubmed

GNN Defense Attack-1 Attack-4 Attack-5 Attack-7 Attack-1 Attack-4 Attack-5 Attack-7

AUC↓ Loss↑AUC↓ Loss↑AUC↓ Loss↑AUC↓ Loss↑ AUC↓ Loss↑AUC↓ Loss↑AUC↓ Loss↑AUC↓ Loss↑

Basic 0.92 - 0.91 - 0.93 - 0.92 - 0.78 - 0.85 - 0.73 - 0.86 -
(†)EdgeRand(𝜖 = 6) 0.81 0.1 0.82 0.1 0.8 0.12 0.82 0.1 0.71 0.08 0.75 0.1 0.71 0.02 0.76 0.1
(∗)LapGraph(𝜖 = 0.1) 0.7 0.22 0.7 0.21 0.7 0.23 0.74 0.18 0.64 0.14 0.66 0.19 0.7 0.03 0.73 0.13

SAGE LapGraph(𝜖 = 6) 0.7 0.21 0.7 0.21 0.7 0.22 0.75 0.17 0.64 0.14 0.66 0.19 0.7 0.03 0.72 0.14
NARGIS 0.82 0.09 0.81 0.1 0.87 0.05 0.85 0.07 0.77 0.02 0.78 0.07 0.74 -0.01 0.81 0.05

(∗)NARGIS-DefTuned 0.63 0.28 0.61 0.3 0.7 0.23 0.75 0.17 0.58 0.2 0.59 0.26 0.69 0.04 0.72 0.14
(†)NARGIS-PredTuned 0.68 0.24 0.64 0.27 0.75 0.18 0.75 0.18 0.62 0.16 0.63 0.22 0.7 0.03 0.74 0.12

Basic 0.93 - 0.93 - 0.91 - 0.92 - 0.86 - 0.9 - 0.76 - 0.9 -
(†) EdgeRand(𝜖 = 6) 0.85 0.09 0.88 0.06 0.82 0.09 0.85 0.07 0.83 0.03 0.85 0.05 0.72 0.04 0.86 0.03
(∗)LapGraph(𝜖 = 0.1) 0.51 0.42 0.52 0.42 0.53 0.38 0.7 0.22 0.52 0.33 0.52 0.38 0.67 0.09 0.72 0.18

GCN LapGraph(𝜖 = 6) 0.66 0.28 0.66 0.27 0.65 0.26 0.74 0.18 0.62 0.23 0.64 0.26 0.69 0.07 0.71 0.19
NARGIS 0.89 0.04 0.89 0.05 0.88 0.03 0.88 0.04 0.85 0.01 0.86 0.04 0.77 -0.01 0.88 0.02

(∗)NARGIS-DefTuned 0.88 0.05 0.87 0.06 0.88 0.03 0.88 0.05 0.84 0.02 0.85 0.05 0.76 0 0.86 0.04
(†)NARGIS-PredTuned 0.88 0.06 0.87 0.06 0.88 0.03 0.87 0.05 0.84 0.02 0.85 0.05 0.76 0 0.86 0.04

Basic 0.9 - 0.9 - 0.91 - 0.9 - 0.73 - 0.84 - 0.72 - 0.84 -
(†)EdgeRand(𝜖 = 6) 0.72 0.18 0.72 0.18 0.74 0.17 0.77 0.13 0.64 0.1 0.67 0.16 0.7 0.03 0.7 0.14
(∗)LapGraph(𝜖 = 0.1) 0.51 0.39 0.52 0.38 0.55 0.36 0.71 0.19 0.52 0.21 0.52 0.32 0.67 0.05 0.67 0.16

GAT LapGraph(𝜖 = 6) 0.6 0.3 0.6 0.3 0.6 0.31 0.72 0.18 0.57 0.17 0.57 0.26 0.69 0.03 0.66 0.18
NARGIS 0.72 0.18 0.79 0.11 0.84 0.07 0.84 0.07 0.68 0.05 0.7 0.13 0.7 0.02 0.74 0.1

(∗)NARGIS-DefTuned 0.56 0.34 0.72 0.18 0.73 0.18 0.77 0.13 0.57 0.16 0.55 0.28 0.63 0.09 0.66 0.17
(†)NARGIS-PredTuned 0.64 0.26 0.68 0.22 0.71 0.2 0.77 0.14 0.61 0.12 0.63 0.2 0.64 0.09 0.65 0.19

Dataset−→Shadow Dataset Citeseer −→ Cora Citeseer −→ Pubmed

Basic 0.91 - 0.91 - 0.93 - 0.94 - 0.82 - 0.85 - 0.63 - 0.88 -
EdgeRand(𝜖 = 6) 0.79 0.12 0.8 0.11 0.82 0.11 0.86 0.08 0.75 0.07 0.76 0.09 0.61 0.02 0.85 0.04
LapGraph(𝜖 = 0.1) 0.74 0.17 0.75 0.16 0.77 0.16 0.81 0.13 0.71 0.12 0.72 0.13 0.62 0.02 0.81 0.07

SAGE (†)(∗)LapGraph(𝜖 = 6) 0.74 0.18 0.74 0.17 0.77 0.17 0.81 0.13 0.7 0.13 0.7 0.15 0.61 0.02 0.8 0.08
NARGIS 0.72 0.19 0.72 0.2 0.79 0.14 0.82 0.12 0.68 0.15 0.68 0.17 0.62 0.01 0.77 0.11

(∗)NARGIS-DefTuned 0.63 0.28 0.62 0.29 0.71 0.22 0.8 0.14 0.61 0.22 0.61 0.24 0.62 0.01 0.73 0.16
(†)NARGIS-PredTuned 0.72 0.19 0.72 0.19 0.82 0.11 0.87 0.07 0.66 0.17 0.68 0.17 0.61 0.02 0.77 0.11

Basic 0.93 - 0.94 - 0.94 - 0.94 - 0.87 - 0.89 - 0.63 - 0.91 -
(†) EdgeRand(𝜖 = 6) 0.82 0.11 0.84 0.09 0.85 0.1 0.88 0.06 0.82 0.05 0.83 0.06 0.61 0.02 0.89 0.01
(∗)LapGraph(𝜖 = 0.1) 0.51 0.42 0.51 0.42 0.56 0.38 0.77 0.17 0.52 0.35 0.52 0.37 0.6 0.04 0.76 0.15

GCN LapGraph(𝜖 = 6) 0.62 0.31 0.63 0.31 0.66 0.28 0.78 0.16 0.61 0.26 0.61 0.28 0.61 0.02 0.76 0.15
NARGIS 0.77 0.16 0.77 0.16 0.85 0.09 0.9 0.04 0.72 0.15 0.74 0.15 0.63 0 0.83 0.08

(∗)NARGIS-DefTuned 0.62 0.32 0.68 0.26 0.76 0.18 0.85 0.09 0.56 0.31 0.57 0.32 0.63 0 0.76 0.15
(†)NARGIS-PredTuned 0.85 0.08 0.86 0.08 0.9 0.05 0.92 0.03 0.81 0.06 0.82 0.07 0.64 -0.01 0.85 0.06

Basic 0.89 - 0.9 - 0.92 - 0.93 - 0.78 - 0.84 - 0.61 - 0.86 -
(†)EdgeRand(𝜖 = 6) 0.67 0.22 0.68 0.22 0.7 0.22 0.81 0.12 0.62 0.16 0.63 0.21 0.6 0.01 0.78 0.08
(∗)LapGraph(𝜖 = 0.1) 0.54 0.35 0.54 0.35 0.59 0.33 0.77 0.16 0.52 0.26 0.52 0.32 0.6 0.01 0.76 0.11

GAT LapGraph(𝜖 = 6) 0.63 0.26 0.63 0.26 0.66 0.26 0.79 0.14 0.59 0.19 0.6 0.24 0.63 -0.01 0.76 0.1
NARGIS 0.81 0.08 0.82 0.08 0.9 0.02 0.91 0.02 0.76 0.02 0.78 0.06 0.61 0.01 0.81 0.06

(∗)NARGIS-DefTuned 0.64 0.26 0.7 0.2 0.78 0.14 0.86 0.07 0.61 0.18 0.61 0.23 0.61 0 0.75 0.11
(†)NARGIS-PredTuned 0.63 0.26 0.66 0.24 0.81 0.11 0.87 0.06 0.59 0.19 0.63 0.21 0.61 0.01 0.78 0.08

Dataset−→Shadow Dataset Pubmed −→ Cora Pubmed−→ Citeseer

Basic 0.87 - 0.88 - 0.84 - 0.91 - 0.88 - 0.89 - 0.89 - 0.9 -
(†)EdgeRand(𝜖 = 6) 0.76 0.11 0.76 0.12 0.72 0.12 0.84 0.07 0.76 0.12 0.76 0.12 0.77 0.12 0.82 0.08
LapGraph(𝜖 = 0.1) 0.75 0.12 0.76 0.12 0.72 0.12 0.84 0.06 0.75 0.12 0.76 0.12 0.78 0.1 0.83 0.08

SAGE (∗) LapGraph(𝜖 = 6) 0.75 0.12 0.76 0.12 0.69 0.15 0.84 0.07 0.75 0.12 0.76 0.13 0.76 0.13 0.82 0.08
NARGIS 0.81 0.06 0.84 0.04 0.79 0.05 0.88 0.03 0.81 0.06 0.85 0.04 0.85 0.04 0.87 0.03

(∗)NARGIS-DefTuned 0.72 0.15 0.74 0.14 0.69 0.15 0.85 0.06 0.72 0.15 0.74 0.14 0.75 0.13 0.83 0.07
(†)NARGIS-PredTuned 0.67 0.2 0.75 0.14 0.65 0.19 0.85 0.05 0.67 0.2 0.76 0.13 0.75 0.14 0.85 0.05

Basic 0.83 - 0.89 - 0.81 - 0.92 - 0.81 - 0.89 - 0.82 - 0.91 -
EdgeRand(𝜖 = 6) 0.62 0.2 0.6 0.29 0.78 0.03 0.88 0.04 0.63 0.18 0.56 0.33 0.66 0.16 0.87 0.04

(∗)LapGraph(𝜖 = 0.1) 0.51 0.32 0.51 0.38 0.55 0.26 0.86 0.05 0.51 0.3 0.51 0.38 0.54 0.28 0.86 0.05
GCN (†)LapGraph(𝜖 = 6) 0.54 0.28 0.57 0.32 0.5 0.31 0.85 0.07 0.54 0.27 0.57 0.32 0.61 0.21 0.86 0.05

NARGIS 0.81 0.02 0.84 0.05 0.75 0.06 0.9 0.02 0.79 0.03 0.84 0.05 0.77 0.05 0.88 0.02
(∗)NARGIS-DefTuned 0.52 0.3 0.73 0.16 0.55 0.26 0.92 0 0.53 0.28 0.75 0.14 0.55 0.27 0.92 -0.01
(†) NARGIS-PredTuned 0.55 0.28 0.71 0.19 0.55 0.26 0.92 0 0.54 0.27 0.74 0.15 0.56 0.26 0.92 -0.01

Basic 0.85 - 0.87 - 0.82 - 0.9 - 0.85 - 0.87 - 0.87 - 0.89 -
(∗)EdgeRand(𝜖 = 6) 0.5 0.34 0.53 0.34 0.72 0.1 0.88 0.01 0.5 0.35 0.53 0.34 0.7 0.17 0.88 0.01
LapGraph(𝜖 = 0.1) 0.51 0.33 0.52 0.35 0.55 0.27 0.87 0.02 0.51 0.34 0.52 0.35 0.56 0.3 0.86 0.03

GAT (†)LapGraph(𝜖 = 6) 0.56 0.28 0.57 0.29 0.52 0.3 0.87 0.02 0.57 0.29 0.57 0.3 0.62 0.25 0.86 0.03
NARGIS 0.8 0.05 0.82 0.04 0.77 0.05 0.87 0.03 0.8 0.05 0.83 0.04 0.84 0.03 0.86 0.03

(∗) NARGIS-DefTuned 0.64 0.21 0.68 0.19 0.63 0.19 0.84 0.05 0.64 0.21 0.69 0.18 0.72 0.15 0.85 0.04
(†)NARGIS-PredTuned 0.63 0.22 0.67 0.2 0.62 0.2 0.85 0.05 0.63 0.22 0.68 0.18 0.72 0.15 0.86 0.03

measures only- not the mutual influence between node
features.

Based on the findings, we propose some investigation scenarios
and hypotheses:
Formalizing the Influence of 𝜆Weights inDefense Loss.While

tuning the model for best performances, the main adjustment was
done for the loss weights 𝜆𝑚𝑖𝑠𝑐 , 𝜆𝑎𝑙𝑖𝑔𝑛 , 𝜆𝑑𝑖𝑠𝑡 and 𝜆𝑐𝑜𝑟𝑟 . Their cor-
responding loss gradients for the output layer have closed-form
which could open the door for the theoretical analysis of what
should be the tuning mechanism of these loss weights to achieve
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optimum performance. As the corresponding losses involve con-
trasting objectives, proper tuning scheme can help achieve the
desired fidelity-privacy tradeoff.
𝜆𝑎𝑙𝑖𝑔𝑛 for Tuning Our heuristic for using alignment loss weight
as the tuning parameter for comparison against DP-HPPand DP-
HFPwas that this loss tries to keep the model fidelity performance
up when the other losses are focusing on perturbing the posterior
spaces. Jointly tuning one of the other contrasting loss weights
along with 𝜆𝑎𝑙𝑖𝑔𝑛 could help as a trade-off tuning scheme.
Integrating Node Influence.NARGIS is focused more on perturb-
ing the model output space through the augmented nodes as the
center of the pre-calculated spectral clusters, rather than through
the most influential nodes. Apart from the graph topology which
was used in computing the clusters, we can also integrate the nodes’
influence over others while forming the clusters.
Message-Passing Mechanism. Our model is message-passing
agnostic, as the main defensive layer is established on the graph
input side, rather than in the graph message-passing mechanism,
unlike [27]. As we saw SAGE’s superior performance over GCN or
GAT, it can be a future direction to investigate how to integrate the
augmentation scheme inside the message-passing mechanism.

7 Related Works
In this section, we will introduce the contemporary works on at-
tacks on graphs and GNNs, and the defensive measures against the
attacks. For an in-depth introduction to the message-passing GNNs,
we refer to the works [4, 7, 8, 16, 24] to the readers.

7.1 Attacks on Graph and GNN Models
Literature have discussed attacks on graph in different settings:
poison (manipulating the model through corrupted data), evasion
(manipulating the data to bypass the model without corrupting), re-
construction (inferring the data through model posteriors and other
information), inversion (inferring the model parameters) etc. Under
the evasion settings, Zou et al. [31] has proposed a topological edge
selection-based strategy for inserting fake nodes inside a graph,
where the features are learned using a surrogate model. Chen et al.
[1] have shown that by improving the homophily unnoticeability
of the graphs, Graph Injection attacks, another example of evasion
setting, can outperform previous homophily-based attacks. Differ-
ent attacks have been proposed for inferring the graph structures
and memberships. He et al. [5] introduced Link stealing attack from
the posteriors of GNNs on the basis of proximity-based features. In
[22], Wu et al., have evolved from the notion of similarity between
node posteriors and leverage node feature perturbation-based in-
fluence analysis for predicting graph edges. Zhang et al. [26] has
shown that the privacy risks for edge groups from the membership
inference attack are uneven and performed group-based attacks
depending on the unequal vulnerability. Different works have also
discussed poisoning the graph for reducing the node classification
performance through Meta-Learning (Meta-attack [32]), Reinforce-
ment Learning (NIPA [15]), Fast Gradient Sign Model linearization
(AFGSM [18]) etc. It should be noted that our focus attack is in
reconstruction settings. In contrast, our defense is influenced by
poisoning settings, as it manipulates the graph structure during
training. Defending the model and data from an attack under a

particular setting through adapting another attack settings is the
main focus of our work.

7.2 Defense against Attack on Graph Models
Several defense mechanisms have been proposed and validated for
attack on Graphs and GNNs. The defensive strategies for these
works are mostly focused on robust perturbations of Graph em-
beddings and Differential Privacy guaranteed learning of Graphs.
Zhang and Zitnik has introduced GNNGuard [27]- based on neigh-
bor importance estimation and layer-wise graph memory in order
to prune possible fake and suspicious edges to stabilize the original
graph against the training-time perturbation attack. Differential
privacy-based approaches have been a popular method for defend-
ing against graph reconstruction (specially link stealing) attacks.
Kolluri et al. [9] developed a novel architecture named LPGNet
using only multilayer perceptrons to model both the node feature
information and some carefully chosen graph structural informa-
tion from the graph edges after compressing the edge information
as a feature vector. In this way, edges are kept separate from the
attacks. Another approach called Blink ([30]) injects noise into
each node’s adjacency list and degree in a decentralized setting and
guarantees Localized Differential Privacy; and then uses Bayesian
estimation in the server to receive original edge information. Zhou
et al. have introduced the Markov chain-based graph reconstruction
attack and defense under information theory-guided assumptions
[29]. Wu et al., apart from LinkTeller, also introduced in [22] two
DP-based defenses named EdgeRand and LapGraph against link in-
ference attacks, as discussed in previous sections. Our work differs
from these DP-based reconstruction-defending approaches in dif-
ferent aspects. Firstly, unlike the DP-based approaches, our model
does not change the original edges and node features through noise
injection. Hence, the originality of the concerned data is preserved.
Secondly, we leverage a deterministic approach- spectral clustering,
for injecting the nodes in focused places- instead of the random-
ized approach prioritized by the DP-based models. This can pave
the way for more stable and consistent performance analysis and
guarantees.

8 Conclusion and Future Work
In this paper, we introduce a defense against link-stealing attacks
inspired by the paradigm of using attacks as a form of defense. We
propose NARGIS - a node augmentation-based defense for GNN,
which can restrict the model from providing posteriors leading
to edge inference attackers, by perturbing the embedding space
through augmenting nodes with learnable features instead of fixed
ones. We show that our model can achieve good fidelity-privacy
tradeoff in some cases, while there are other scopes to improve on.
Future work. In the future we want to theoretically find a perfor-
mance bound - concerning the tunable defense loss weights in the
model optimization loop. We also would like to investigate how
to make the model performance better across different message-
passing mechanisms.
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