
Noncompliance as Deviant Behavior: An Automated Black-box
Noncompliance Checker for 4G LTE Cellular Devices

Syed Rafiul Hussain*
Pennsylvania State University

hussain1@psu.edu

Imtiaz Karim*
Purdue University
karim7@purdue.edu

Abdullah Al Ishtiaq
Pennsylvania State University
abdullah.ishtiaq@psu.edu

Omar Chowdhury
University of Iowa

omar-chowdhury@uiowa.edu

Elisa Bertino
Purdue University

bertino@purdue.edu

ABSTRACT

The paper focuses on developing an automated black-box testing

approach calledDIKEUE that checks 4G Long Term Evolution (LTE)

control-plane protocol implementations in commercial-of-the-shelf

(COTS) cellular devices (also, User Equipments or UEs) for noncom-

pliance with the standard. Unlike prior noncompliance checking

approaches which rely on property-guided testing, DIKEUE adopts

a property-agnostic, differential testing approach, which leverages

the existence of many different control-plane protocol implementa-

tions in COTS UEs. DIKEUE uses deviant behavior observed during

differential analysis of pairwise COTS UEs as a proxy for identify-

ing noncompliance instances. For deviant behavior identification,

DIKEUE first uses black-box automata learning, specialized for 4G

LTE control-plane protocols, to extract input-output finite state

machine (FSM) for a given UE. It then reduces the identification

of deviant behavior in two extracted FSMs as a model checking

problem. We applied DIKEUE in checking noncompliance in 14

COTS UEs from 5 vendors and identified 15 new deviant behavior

as well as 2 previous implementation issues. Among them 11 are

exploitable whereas 3 can cause potential interoperability issues.

CCS CONCEPTS

· Networks → Network protocols; Protocol testing and veri-

fication; · Security and privacy→ Mobile and wireless security.

KEYWORDS

Cellular Network, 4G, LTE,Model Learning, Vulnerabilities, Attacks

ACM Reference Format:

Syed Rafiul Hussain*, Imtiaz Karim*, Abdullah Al Ishtiaq, Omar Chowdhury,

and Elisa Bertino. 2021. Noncompliance as Deviant Behavior : An Automated

Black-box Noncompliance Checker for 4G LTE Cellular Devices . In Proceed-

ings of the 2021 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’21), November 15ś19, 2021, Virtual Event, Republic of Korea.

ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3460120.3485388

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’21, November 15ś19, 2021, Virtual Event, Republic of Korea.

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3485388

1 INTRODUCTION

4G Long-Term Evolution (LTE), developed by the 3rd Generation

Partnership Project (3GPP), is a global standard for cellular net-

works. 4G LTE protocols provide ubiquitous connectivity, interoper-

ability, andmassive scale support to numerous network services and

billions of heterogeneous devices. As the security of cellular devices

(also known as, User Equipment or UE) is of utmost importance in

this ecosystem, it is imperative that devices correctly implement

the cellular protocols as mandated by the standard. Faithful imple-

mentation of the cellular protocol is, however, challenging due to

the ambiguities, under-specification, and intricate protocol details

present in the natural languages specification [2, 8, 9]. As a conse-

quence, misinterpretations of the standard are commonplace, which

result in implementations demonstrating noncompliant behavior

with the cellular standard. As an example, if a device responds to

a particular message in a state whereas the standard prescribes

ignoring the message, it gives rise to a noncompliant behavior. The

ramifications of noncompliance with the standard may result in (1)

critical security and privacy flaws (e.g., authentication bypass [39],

location exposure of a target user [51]), and (2) interoperability

issues in the UEs. Since manual identification of noncompliant pro-

tocol behavior in large and complex implementations is error-prone

and time-consuming, in this paper, we aim to develop an automated

approach for identifying noncompliance behavior in 4G LTE UEs.

Prior research. Although prior works [16, 23, 38, 40, 41, 47, 48, 51]

analyzing security and noncompliance of cellular proptocols have

identified several implementation flaws, they suffer from at least

one of the following limitations: (A) The approaches [16, 38ś40,

47, 48, 51] are completely manual and cannot uncover a myriad of

implementation-specific behavior; (B) The analyses [39] perform

semi-automated stateless testing; (C) The approaches based on for-

mal verification [12, 30, 32] only test the protocol specification for

noncompliance and also heavily rely on the coverage and quality

of the properties being testedÐfor which there is no official ex-

haustive list; and (D) The analyses based on re-hosting and reverse-

engineering the baseband software [23, 41] not only require a huge

manual effort and expertise but also are not general enough to be

applicable to implementations from different vendors.

Problem and scope. Since implementations of commercial base

stations and core networks are not publicly accessible, we focus

only on analyzing the commercial 4G LTE device implementations.

Among many different procedures, we further focus on the connec-

tion management and themobility management components of a UE.

These components manage the most critical control-plane proce-

dures, including connection setup, termination, mobility, hand-off,

service notification, and setup procedures. Without the correct and

reliable operations of these stateful procedures, most of the other

control-plane (e.g., call setup) and data plane (e.g., browsing Inter-

net) operations are susceptible to critical security attacks, such as

MitM relay [30, 49], eavesdropping [48] and DNS redirection [49].

In summary, in this paper we address the following research ques-

tion: Is it possible to design an automated , black-box, and stateful

protocol analysis framework that can uncover noncompliant behavior

in the control-plane protocol implementations in 4G LTE UEs?

Challenges. The first critical challange for developing a black-

box noncompliance checker for UEs is to automatically extract a

behavioral abstraction of the protocol implementation. Once we

have extracted the behavioral abstraction from an implementation,

the second challenge is to devise an approach for identifying diverse

noncompliant behavior in a property-agnostic way.

Our approach. In this paper, for our automated and black-box

efficient compliance checker DIKEUE (in Greek mythology, Dike

refers to the goddess of justice), we use the input-output proto-

col finite state machine (FSM) as the behavioral abstraction. One

can consider automatically extracting the protocol FSM from the

implementation in one of the following two ways: (1) passive trace-

based learning approach; (2) active-learning based approach. The

effectiveness of learning the protocol FSM with the trace-based

approach, however, critically hinges on the diversity and coverage

of the input traces. Although it is possible to obtain a large number

of crowd-sourced traces to be used as input to the passive learning

algorithm, these traces often only exercise expected behavior and

miss out on capturing corner-cases where noncompliance occurs.

DIKEUE thus relies on an active FSM learning approach for

which we use an existing automated black-box FSM learning tech-

nique [45, 54, 55]. Our FSM Learner starts from the UE’s initial state,

and using a controlled LTE network, sends queries (i.e., sequences

of over-the-air protocol messages) to the device-under-test; dubbed

System Under Learning (SUL). Based on the observed responses to

the queries (i.e., sequence of protocol messages from the SUL), it

infers the FSM of the underlying implementation. Although au-

tomata learning has been used in the context of testing various

protocols [20, 21, 25ś27, 46, 53], applying it in 4G LTE domain re-

quires taking into account some protocol-specific challenges. First,

4G LTE is a complexmulti-layer protocol. Second, protocols in each

layer entail multiple timers and re-transmission counters, whose

values are unobservable from the output interface, making the de-

vice’s protocol FSM seem to behave in a nondeterministic way,

violating one of the pre-requisites of applying active, black-box

automata learning approaches (i.e., deterministic behavior). Third,

after each sequence of messages, the SUL needs to reset transpar-

entlyś deleting all internal states and context information without

any modification on the device. Fourth, in addition to the general

behavior, i.e., regular protocol flow of the SUL, the learner needs to

infer the implementation-specific atypical behavior, e.g., response to

a replay packet, to further aid the noncompliance checking. Finally,

a substantial amount of engineering effort is needed to develop an

adapter, which facilitates the communication between the learning

algorithm and the SUL by converting abstract symbols to over-the-

air messages. We rely on some existing efforts and also develop

some new insights to address the above aspects.

Once we have extracted the FSMs of the devices’ LTE control-

plane protocol implementations,DIKEUE takes advantage of having

access to multiple COTS UEs. Particularly, it relies on the concept

of deviant behavior as a proxy for identifying noncompliant behav-

ior in a property-agnostic way during the differential analysis of

two FSMs belonging to two different UEs. In our context, a deviant

behavior is a sequence of inputs for which the two FSMs that are

being compared, when executed from the initial state, generate

distinct output sequences. When comparing two FSMs, if a deviant

behavior is observed, then it is clear that at least one of the imple-

mentations is noncompliant even though it is not clear which one.

These deviant traces are then triaged through consultation with

cellular protocol standards to classify them into one of the follow-

ing two root causes: (1) the implementation deviates from a clear

specification; (2) the specification suffers from under-specification

or ambiguity. Automatic identification of diverse deviant traces

between any two FSMs, however, is challenging, especially in the

presence of loops in the FSMs. DIKEUE addresses this challenge

by reducing the problem of identifying deviant behavior in two

different FSMs to a model checking problem. The model checking

problem checks the safety properties of a model which parallelly

composes the two FSMs under analysis.

Findings. To test the effectiveness of our system, we evaluate

DIKEUEwith 14 popular UEs from 5 vendors, including Qualcomm,

MediaTek, Exynos, HiSilicon, and Intel. DIKEUE has uncovered 15

new distinct deviations and two previously reported issues. Some

of these issues are only evident when the implementation reaches

a specific state and can only be uncovered through stateful testing.

We classify these deviant behavior based on root causes and impacts.

Among the reported issues 11 are exploitable, and 3 are susceptible

to interoperability issues between UEs and network operators. The

implications of these deviations include implementations accept-

ing replayed messages and plaintext messages, exposing private

information, and causing denial-of-service attacks.

Responsible disclosure. We have responsibly disclosed our find-

ings to all the affected stakeholders (i.e., GSMA, Qualcomm, Me-

diaTek, Exynos, HiSilicon, Intel, Apple, Samsung, Huawei, HTC,

Android). GSMA has acknowledged with CVD-2021-0050 for all

the 15 newly discovered deviating behavior. The affected vendors

are in the process of patching the issues in future versions.

Contributions. To summarize, this paper makes the following

technical contributions:

• We propose DIKEUEÐ which, to the best of our knowledge, is

the first tool that designs a black-box FSM inference module to

automatically infer the FSM from a UE’s implementation with-

out any manual interventions or modifications to the devices.

DIKEUE will be publicly available at [1] after all the affected

UEs are patched and the responsible disclosure is completed.

• We design an FSM equivalence checking algorithm that auto-

matically detects and reports diverse deviant behavior of two

FSMs by reducing it to a symbolic model checking problem.

• We evaluate DIKEUE with 14 different devices from 5 vendors,

and demonstrate that it can uncover 17 deviant behaviors, in-

cluding 11 exploitable weaknesses and 3 interoperability issues.

2 BACKGROUND

DIKEUE infers the model of a protocol implementation in the form

of a Mealy machine, also known as a finite state machine (FSM). In

the following, we define a Mealy machine, provide an overview of

model learning, and discuss relevant technologies in 4G LTE.

Finite State Machine (FSM). We define an FSM (M) as a 6-tuple

(S,S0,Ψ, Σ,Λ,Ω), where S is a finite set of states, S0 ∈ S is the

initial state. Σ andΛ are the sets of input and output alphabets repre-

senting the set of possible input and output messages, respectively.

The transition relation Ψ : S × Σ → S maps the pair of a current

state and an input symbol to the corresponding next state, and the

output relationship Ω : S × Σ → Λ maps the pair of a current state

and an input symbol to the corresponding output symbol.

2.1 Active Automata Learning

Active automata learning approaches such as L∗ aim to learn the

deterministic finite automata (DFA) representation of an unknown

regular language L for a given input alphabet from a minimal

adequate teacher (MAT). The learner asks the MAT the following

two types of queries, namely, membership queries and equivalence

queries. A membership query is of the form x ∈? L (i.e., the learner

wants to check whether a concrete string x is a member of the

unknown language L). The MAT responds with a yes iff x ∈ L;

otherwise, it responds with a no. An equivalence query, on the

other hand, checks whether a hypothesis DFAH is equivalent to

the DFA of the language L denoted by DL , i.e., both H and DL

accept the same set of strings. IfH is not equivalent to DL , then

the MAT should provide a concrete string y that is accepted by one

but rejected by another as a counterexample.

A majority of the automata learning approaches work itera-

tively in the following two stages [10, 34]. Hypothesis construc-

tion stage: In this stage, the learner asks a series of membership

queries to build a closed and consistent hypothesis DFAH for L.

Model validation stage: In this stage, the learner poses an equiva-

lence query to the MAT to check whetherH is equivalent to DL . If

H is equivalent to DL , the learning concludes, and H is provided

as the learned DFA. Otherwise, the approach goes back to the first

stage to create a new hypothesis based on the provided counterex-

ample and additional membership queries. This learning approach

can be extended in the standard way [50] to learn Mealy machines

instead of a DFA.

In practice, directly applying active automata learning as dis-

cussed above is not feasible. This is because obtaining a MAT with

the capability of answering an equivalence query (needed for the

model validation stage) is absent in the majority of the cases. One

can, however, approximate an equivalence query with a series of

carefully constructed membership queries [17]. We refer to this re-

laxed MAT (without equivalence query stage) as the System-Under-

Learning (SUL). Due to the approximate equivalence checking, the

learned model in such a case is not guaranteed to be correct but

instead assured to be observationally equivalent (i.e., the learned and

original model behave equivalently for strings whose membership

results the learner has observed during learning).

2.2 4G LTE Preliminaries

In the following, we introduce the most important network compo-

nents relevant to our analysis in this paper.

User Equipment (UE). The UE, also called cellular device, is the

user’s access terminal, in most cases, a smartphone. The User Ser-

vices Identity Module (USIM) stores the user identifier, the master

secret key, and shared session keys. With these credentials, the user

and the network performs mutual authentication.

eNodeB. The base stations, i.e., eNodeBs span the wireless cells that

users connect to. An eNodeB performs all connection management

through the Radio Resource Control (RRC) protocol with a UE.

Core network and MME. The operator-run core network is a

server landscape that performs all management aspects of mobile

networks. The Mobility Management Entity (MME) is the central

component managing users access, mutual authentication, and

keeping track of a user’s location. Most of these functions involve

many other network nodes; however, the MME orchestrates them.

UE and MME communicate through Non-Access Stratum (NAS)

protocol with the eNodeB as a relay. The MME is connected to

eNodeBs through the S1AP protocol (shown in Figure 7).

Protocol Overview.When a UE is turned on, it first connects with

a base station with three-way RRC layer handshaking messages.

This connection allows a UE to initiate the attach procedure with

the core network in which the UE and the MME mutually authen-

ticate each other, negotiate security algorithms for both NAS and

RRC layers, and complete the attach process with IP address and a

temporary identifier assigned to the UE. We discuss in detail the

relevant NAS and RRC layer procedures in Appendix A.1.

3 DESIGN OF DIKEUE

We now present the threat model, formally define our problem,

discuss the workflow of DIKEUE, and outline the challenges of

designing DIKEUE as well as insights on addressing them.

3.1 Threat Model

We consider the communication channels between the UE and

base station, and between the UE and core network subjected to

adversarial influence. Our attacker model follows the one defined

by previous works [30, 39, 47, 51] and comprises of either a passive

or an active attacker that differs in capabilities and restrictions. The

passive attacker can observe arbitrary communication between the

UE and the LTE network over the radio layer. The active attacker

can additionally intercept, replay, modify, drop or delay message,

without knowing the key material of devices not owned by the

attacker. Moreover, the attacker can deploy a fake LTE base station

impersonating a real LTE network. Note that, the cryptographic

constructs are considered to be perfectly secure. We also consider

the core network components, target user’s UE, and the USIM to be

part of the trusted computing base and free of adversarial influence.

3.2 Problem Statement and Approach Skeleton

Problem.DIKEUE aims to solve the following noncompliance prob-

lem. Given black-box access to a LTE control-plane protocol im-

plementation I of a UE, the noncompliance asks is there an input

sequence πi = σ1σ2σ3 . . . σm where σj ∈ Σ such that the output se-

quence generated by I after feeding πi as input, γi = λ1λ2λ3 . . . λm
in which λj ∈ Λ, is not the one prescribed by the standard.

Approach skeleton. For addressing the above noncompliance

problem, DIKEUE takes advantage of its black-box access to mul-

tiple UE implementations ⟨I1,I2, . . . ,In⟩. It also requires that the

Existing insight on satisfying P2. For addressing the observa-

tional nondeterministic behavior of a UE, we conservatively pose

each membership query twice. In case the outputs for both these

membership queries agree, we update the observational table. In

case of a conflict, however, we use the existing approach of using a

majority voting scheme to resolve conflicting output sequences [44].

Novel LTE-specific insight on satisfying P3. For satisfying P3,

we discovered a protocol-specific behavior to transparently reset

the device and take it to an initial state. Having a software solution

allows us to avoid the expensive approach of manually rebooting

the device; positively impacting the termination of learning.

Challenge C2:Balancing Termination andCoverage of Learn-

ing. Another major challenging aspect of effectively applying au-

tomata learning for extracting the 4G LTE protocol state machine of

a UE is achieving the right balance between termination and cover-

age. On one hand, aiming to achieve a high coverage of the behavior

negatively impacts the termination. Premature termination, on the

other hand, negatively impacts coverage. The termination of the

learning algorithm is impacted by the following factors: (1) number

of posed membership queries (reliant on the input alphabet size); (2)

the time to run each membership query and obtaining a response;

(3) the time it takes to resolve observational nondeterminism.

Novel LTE-specific insight of input alphabet selection. Al-

though we can potentially have a total of 261 (= 256 + 5) input

symbols, some of the input symbols are irrelevant. As an exam-

ple, consider a condition wheremessaдe_kind(m) , sm_command in

which case the value of the predicate is_null_security(m) is not

relevant as it only applies to the sm_command message. In addition, to

reduce the model learning time, we heuristically prune away other

input symbols that may not trigger interesting security-sensitive

behavior. After pruning, we end up with a list of 35 input symbols

which is much smaller than the original set of 261.

Novel LTE-specific insight of context checker. We develop a

context-checker with a set of invariants to automatically deduce

outputs for certain input message sequences posed as membership

queries without having to run them in the UE. These invariants are

conservative rules (i.e., ruling out certain infeasible orderings of

protocol messages) that one can reasonably expect a UE to satisfy

(e.g., not receiving certain protocol packets without an established

connection). Input sequences violating these invariants can be con-

sidered to have the output sequence null_actionn wheren is the length

of the input message sequence. Note that, null_action is a special out-

put symbol that refers to the UE not generating any outputs.

Existing insight on caching results. Running a query in the

device is expensive. We thus follow an existing approach [11, 52]

of maintaining a cache of membership queries, i.e., input sequences

and their corresponding outputs encountered during the hypothesis

construction stage. Equivalence queries posed during model valida-

tion stage are first consulted with the cache. If the cache is hit, then

the response stored in the cache is used. Note that, the cache is not

used during the hypothesis construction stage.

Challenge C3:Designing a Protocol-specific Adapter. The final

challenge for applying active automata learning in the context of 4G

LTE protocol state machines involve developing a 4G LTE-specific

adapter. The adapter facilitates communication between the learner

and the UE device. It needs to convert the abstract input symbols

in the membership queries to concrete OTA packets and send them

to the UE. In the same vein, it also needs to decode the response

from the UE and convert it back to abstract output symbols compre-

hensible to the learner. Developing such a 4G LTE-specific adapter

is challenging because protocol layers are intertwined and have

strong temporal correlations among their operations. As an exam-

ple, some NAS layer messages can only be sent after particular RRC

layer messages, and vice versa. Also, messages of both layers con-

tain timers and re-transmissions but, internal protocol states, e.g.,

transmission failures and timeouts, are not observable from the in-

put/output messages. In addition, for analyzing communication and

mobility management protocols, the adapter needs to trigger certain

behavior and corner cases in the UE that pose physical constraints

on the UE. For instance, testing handover scenarios requires the UE

to be physically moved between multiple base stations, which is

not practical and non-trivial to test in any controlled environment.

LTE-specific adapter.Wehave developed a LTE-specific adapter

by enhancing an open-source protocol stack that can transparently

send and receive messages based on the directions of the learner.

The adapter can handle the complex multi-level, stateful interac-

tions in 4G LTE, including different error conditions.

Novel LTE-specific insight on triggering complex operations.

We developed an adapter that can trigger complex 4G LTE behavior

in the software that would otherwise require physically moving

the UE, e.g., similar to ones for analyzing the handover procedure.

3.4.2 Identifying Noncompliance from Protocol State Machines. Re-

call that, once we have extracted the protocol state machines of

the UE implementations under test, we use differential testing of

pairwise protocol state machines from different implementations

to identify deviant-behavior-inducing input sequences [24, 42]. We

use these input sequences as a proxy for noncompliant behavior.

The main challenge for achieving this goal is how to automatically

identify a diverse set of deviant-behavior-inducing input sequences.

Existing equivalence checking approaches are insufficient for our

purpose as they neither have the notion of diversity nor the capabil-

ity to provide multiple deviant-behavior-inducing input sequences.

Novel insight on differential testing. We propose a notion of

diversity classes for deviant-behavior-inducing input sequences (see

Section 5). We use this notion of diversity classes to develop a novel

approach that reduces identifying deviant-behavior-inducing input

sequences to a model checking problem. This approach enables us

to not only automatically identify deviant-behavior-inducing input

sequences from different diversity classes but also identify different

instances from the same class.

4 FSM INFERENCE MODULE

We now explain in details the components that leverage LTE-

specific insights to enable a practical FSM inference module.

4.1 Learner

Following the model learning algorithm [34], the learner systemat-

ically generates queries as sequences of input alphabets, and based

on the outputs, infers the underlying FSM.

4.1.1 Taming the time and state explosion with alphabet set opti-

mization: The time and the number of queries required to learn

the model are directly proportional to the number of input alpha-

bets. We, therefore, first leverage LTE-specific insights to reduce

Reduction. Suppose the two FSMs under differential test are de-

noted by M1 and M2. The inputs to these two FSMS (downlink

messages they can receive) are denoted by I1 (for M1) and I2 (for

M2), respectively. Similarly, let us denote their outputs (messages

they can send) asO1 (forM1) andO2 (forM2), respectively. We then

construct a modelM which containsM1 andM2 as sub-components.

M will take a single symbolic input I which will be fed to both I1
and I2 (i.e., the same input for bothM1 andM2).M will have two

outputs O1 and O2, essentially outputs ofM1 andM2, respectively.

The modelM can be viewed as composingM1 andM2 with a paral-

lel composition. We then assert the following property of the model

M : It is always the case that O1 and O2 should be equal in each step

of the execution (precisely, in linear temporal logic □(O1 = O2)). We

want to emphasize that the input I (which is essentially I1 and I2)

is an environmental variable, i.e., we do not need to provide any

concrete inputs for I . The model checker aims to find a sequence

of I values for which the property is violated (i.e.,O1 , O2 in some

steps). A counterexample idenfied by the model checker suggests

essentially a deviation-inducing input.

5.2 Challenge of Obtaining Diverse Deviations

Note that, we are interested in discovering many diverse deviation-

inducing inputs. If we want the model checker to give us diverse

counterexamples, we have to somehow inform it of the concept of

diverse counterexamples. If we were to invoke the model checking

multiple times, it is highly likely that it will give the same coun-

terexample, the shortest in many cases. We indeed need the notion

of diversity, but it is unclear how to precisely define it. After getting

a counterexample c1, one may consider updating the original prop-

erty □(O1 = O2) by blocking c1. This will make the model checker

find a different counterexample if present. However, the obtained

counterexample may not match our intuitive notion of diversity.

To explain this situation, let us consider the following example.

Example. Suppose we have the two partial FSMsM1 (i.e., the top

one) and M2 (i.e., the bottom one), as shown in Figure 4. For this

example, let us only focus on the states a,b, and c ofM1 andM2. The

transitions are denoted as si
xk /yo
→ sj , which refers to a transition

that moves the current state from si to sj after receiving input xk ,

and in the process generating outputyo . In the example,M1 andM2

behave in the same way for all transitions except for b → c (shown

in red color). M1 and M2 generate two different output messages

(i.e.,y6 andy7, respectively) when taking the transitionb → c under

input x6. Using the above approach, if we were to ask the model

checker to find a counterexample, it would likely give us the input

sequence in which both FSMs traverse the following states: abc ; as it

is the shortest one. Nowwhen we block abc , the model checker may

give a counterexample whereM1 andM2 traverse states abbc ; being

the next counterexample closest to the previous one. This loop can

go on where it spits out a variant of the (a+b+)+c counterexample

(‘+’ signifies one or more occurrences). These counterexamples

show the same problem of the transition b → c .

One may consider removing the transition b → c altogether

from bothM1 andM2. This may, however, result in a disconnected

model in which the rest of the states become unreachable making

it infeasible to find other noncompliance instances infeasible.

5.3 Identifying Diverse Deviations

To identify diverse deviation-inducing input sequences, we propose

the notion of diversity classes. We use this notion to identify different

noncompliance instances in a given pair of FSMs.

Definition 5.1 (Diversity Class of Deviation-inducing Input Se-

quences). Given a fixed set of output symbols Λ where |Λ| = n,

there are a total of n×(n−1) possible diversity classes for deviation-

inducing input sequences; one for each pair of distinct output

symbols (i.e., ⟨λr , λs ⟩ where λr , λs ∈ Λ and λr , λs). For any

pair of FSMs M1 and M2, a deviation-inducing input sequence

πi = σ1σ2σ3 . . . σm is an element of the ⟨λr , λs ⟩-diversity class

iff when πi is executed onM1 andM2 to obtain output sequences

γ 1i = λ1
1
λ1
2
λ1
3
. . . λ1m and γ 2i = λ2

1
λ2
2
λ2
3
. . . λ2m , respectively, then

there exists a 1 ≤ k ≤ m such that λ1
k
= λr and λ

2

k
= λs .

As an example, suppose we are given two FSMsM1 andM2 for

which Σ = {a,b, c} and Λ = {1, 2, 3, 4}. Let us consider a deviation-

inducing input sequence π = abcc forM1 andM2 for which we ob-

tain the output sequences γ 1 = 1234 and γ 2 = 1243 after executing

π onM1 andM2, respectively. π is an element of the ⟨3, 4⟩-diversity

class as there exists a k = 3 for which γ 1
3
= 3 and γ 2

3
= 4. Note that,

π is also an element of ⟨4, 3⟩-diversity class as there exists k = 4

for which γ 1
4
= 4 and γ 2

4
= 3.

We use the above notion of diversity classes to identify a diverse

set of deviation-inducing input sequences. Without loss of gener-

ality, we use an example to explain our approach. Suppose we are

given two FSMsM1 andM2 with Λ = {1, 2, 3}. Instead of asserting

the safety property□(O1 = O2) in the composedmodelM (as shown

in Figure 3), we would pose a series of model checking queries; one

for each of the following safety properties: (1) □¬(O1 = 1∧O2 = 2)

(read, it is not the case that at any step of the execution the output

ofM1 is 1 whereas the output ofM2 is 2); (2) □¬(O1 = 1 ∧O2 = 3);

(3) □¬(O1 = 2 ∧ O2 = 1); (4) □¬(O1 = 2 ∧ O2 = 3); (5) □¬(O1 =

3 ∧O2 = 1); (6) □¬(O1 = 3 ∧O2 = 2). Each of the queries aims to

find at least an element, if present, for each of the diversity classes.

As an example, any violation of property (1) above will result in an

input sequence that is part of the ⟨1, 2⟩-diversity class.

We go a step further by trying to identify multiple elements of

each diversity class. Finding other elements of a diversity class is

important as the same deviation can happen in different parts of

the FSMs. Once we have obtained an element of a given diversity

class, for identifying other elements of that diversity class, we use

the idea of removing the transition responsible for the deviation

from both FSMs (see Section 5.2), and posing the appropriate model

checking query again. Although removing the transition may re-

sult in disconnected FSMs, it is not as disruptive as the approach

discussed in Section 5.2 because this phenomenon is localized to

only a single equivalence class.

6 IMPLEMENTATION

The FSM inference module is implemented on top of LearnLib [35]

and srsLTE [6]śan open-source 4G LTE stack. For the learning

algorithm, we use TTT [34] as it requires fewer queries compared

to other algorithms [33], and for conformance testing, we use Wp-

method [17]. We implement our adapter in Java. We use srsLTE

v19.10 as the cellular stack to implement our modified core network

8.1.2 Plaintext message acceptance after security context: The de-

viations EI3 and EI4 in Table 4 are identified in two different ven-

dors. The affected devices respond to plaintext identity_request and

auth_request messages even if the security context has been established.

No other vendors accept plaintext messages after the establishment

of the security context. Note that previous work has shown attacks

exploiting the plaintext identity_request and auth_request messages. But

those messages are sent by the adversary before the security con-

text is established, whereas our findings show some devices accept

those plaintext messages even after the security context is set up.

Root cause analysis. Initially, it may appear to be a straightfor-

ward deviation from the specification; however, a deeper analysis

of the specification paints out a different picture. In TS 24.301 [9]ś

the specification for the NAS layer, it is stated that plaintext iden-

tity_request shall be processed by the UE until the secure exchange

of NAS messages for the NAS signaling connection. Once the se-

cure exchange of NAS messages has been established, the receiving

entity shall not process any plaintext NAS message. However, in

the security specification TS 33.401 [8], it is explicitly stated that

all NAS signaling messages except the listed messages in TS 24.301

(the list includes identity_request, auth_request) as exceptions shall be

integrity-protected. This implies that plaintext identity_request and

auth_request can be accepted by the UE even after the security con-

text has been established. These conflicting standards cause the

developers to pick one of the options, and in this case, it seems

the security standard (TS 33.401) has been followed. Therefore,

conflicting specifications are the root cause of this issue.

Adversary assumptions. The attacker needs the capability to set

up a fake base station and craft plaintext messages. We assume the

adversary knows the victim UE’s C-RNTI [49] but does not need to

eavesdrop or capture any messages apriori. The adversary can also

overshadow any downlink message between the network and the

UE to carry out the attack [22].

Attack description. The adversary uses a fake base station to

connect to a victim UE and sends a crafted plaintext auth_request or

identity_request message. Alternatively, the adversary can also over-

shadow any downlinkmessagewith plaintext identity_request or auth_request

even after the security context is established. The UE accepts these

messages and replies with plaintext identity_response containing the

IMSI/IMEI of the victim device, or replies with plaintext auth_response.

Impact. The exposure of IMSI even after security context estab-

lishment is particularly fatal. This is because the illegal exposure of

IMSI provides an edge to the adversary to further track the location

of the user or intercept phone calls and SMS using fake base sta-

tions [30, 31] or MitM relays [49]. Furthermore, it has been shown

that auth_request can be used to leak private information, including

subscriber activity monitoring [13], launching DoS, and tracking a

user [13, 37]. Implementations accepting plaintext auth_request are,

therefore, vulnerable to these attacks.

8.1.3 Inappropriate state reset. In exploitable issues E11-E14 (of

Table 4), out-of-sequence, downgraded, or replayed RRC layer mes-

sages induce unwarranted reset of the affected devices’ state ma-

chines, causing connection drops.

Root cause analysis and impact. The root cause for all four is-

sues boils down to the underspecification of the standard. In the

RRC [2] specification, it is stated that whenever a device receives a

message not compatible with the protocol state, the actions are im-

plementation dependent. Due to this underspecification, different

implementations treat these non-compatible messages in different

ways. Devices that are more restrictive than others reset the FSM

state, restart the connection, go through authentication and key

agreement again whenever such a non-compatible message is re-

ceived. This creates the pathway to unintentional DoS in which

an attacker can send such unwarranted (plaintext/replayed/out-of-

sequence) messages from a fake base station intermittently.

Adversary assumptions and attack description. Similar to pre-

vious attacks, this attack assumes the adversary knows the victim’s

C-RNTI and can craft plaintext messages or replay previously cap-

tured messages. The attacker connects to the victim device and

based on the implementation, either sends a replayed or an out-of-

sequence or a downgraded or a plaintext RRC message. Each time

the attacker sends a new adversarial RRC message, the victim just

becomes unresponsive for 4-5 seconds and then reconnects to the

actual base station. To maintain a semi-persistent DoS, the attacker

will have to keep replaying plaintext/replayed/out-of-sequencemes-

sages at every 4-5 seconds interval, causing disruption of regular

operations and fast battery depletion of the victim UE.

8.2 Interoperability issues

DIKEUE uncovered 3 potential interoperability issues EI3, EI4, I15

(shown in Table 4). Due to space constraints, we discuss only I15

related to the handling of RRC_reconf message. RRC Reconfigura-

tion is the key step in establishing/modifying radio connections

between the UE and network. In most of the devices, RRC_reconf

message is accepted both before and after the attach procedure

to create/modify a radio connection. However, DIKEUE identified

two UEs where either RRC_reconf message is exclusively accepted

either before (MediaTek) or after the attach procedure (HiSilicon)

is completed. This may create interoperability issues if the core

network sends RRC_reconf in the other way around. In such a case,

devices from one of the vendors (i.e., MediaTek or HiSilicon) may

fall into certain connectivity issues. From our experiments, a major

network operator sends the RRC_reconf exclusively before the attach

procedure is completed. The root cause of these issues is under-

specification as TS 36.311 [2] states that the only condition for RRC

connection reconfiguration is the UE has to be in the connected

state with the base station. But a UE can be in the connected state

both before and after the attach procedure is completed.

8.3 Other deviant behaviors

DIKEUE also uncovered deviant behaviors O6 - O10 in Table 4,

whose implications are not yet certain. For instance, in O9, some

devices respond to replayed auth_request messages even after an in-

valid sm_command is received, whereas other devices do not. In the

former case, the device accepts such replayed auth_request message

until a valid sm_commandmessage is received. The acceptance of these

replayed messages in that short time interval do not apparently in-

duce state changes or undesired behavior. Nonetheless, these issues

resulting from underspecification of the standards should be further

analyzed for verifying the impact of these deviant behaviors.

8.4 Previous issues

We have also found 2 previously discovered issues (E16 and E17),

that have not been resolved yet. For instance, in E17, Huawei P8lite

Issue Description
Root cause Device

D U

N
ex
u
s6

H
T
C
1

G
al
ax
y
S6

H
T
C
10

N
ex
u
s6
P

G
al
ax
y
S8
+

P
ix
el
3X

L

H
u
w
ay
ei
Y
5

H
o
n
o
r8
X

H
u
w
ae
iP
8

M
iA
1

Ip
h
o
n
e
X
s

U
SB

Fi
b
o
co
m

NAS

(E1) Replayed GUTI_reallocation at
specific sequence

Accepts replayed GUTI_reallocation when sent

immediately after a sm_command
✓ " " " " " " " "

(E2) ReplayedGUTI_reallocation any-
time

Accepts replayed GUTI_reallocation when sent

immediately after a sm_command
✓ "

(EI3) Plaintext auth_request
Accepts plaintextauth_request after security con-
text has been established

✓ " " "

(EI4) Plaintext identity_request
Accepts plaintext identity_request (identification
parameter IMSI) after security context has
been established

✓ " " "

(E5) Selective replay of sm_command

UE accepts replayed sm_command up to the com-
pletion of of the attach procedure. After attach
procedure, the replayed sm_command is not
accepted anymore

✓ "

(O6) DL_NAS_transport without
RRC security

UEperformsDownlinkNASTransport procedure even be-
fore RRC layer security has been established

✓ " " "

(O7) Attach procedure without RRC security
UE completes the attach procedure before RRC layer se-
curity

✓ " " " " "

(O8) GUTI_reallocation before at-
tach procedure completion

UE performsGUTI_reallocation even before the
attach procedure has been completed or RRC
security has been established

✓ " " " " " " " "

(O9) auth_response after sm_reject
UE replies to replayed auth_request even after se-
curity mode command procedure

✓ " " " " " " " " "

(O10) auth_seq_failure reply
After secure context has been established, some imple-

mentations reply with auth_MAC_failure while
others do not reply

✓ " "

RRC

(E11) Out-of-sequence RRC_reconf
causes unresponsiveness

RRC_reconf before RRC_sm_command
makes all other symbols unresponsive

✓ " " " " " " " " " " " "

(E12) ReplayedRRC_reconf causes un-
responsiveness

ReplayedRRC_reconf causes the UE to be unre-
sponsive until new attach procedure is started

✓ " " " " " " " " " " " "

(E13) Out-of-sequence

RRC_sm_command causes un-
responsiveness

RRC_sm_command before NAS
sm_command makes the device unresponsive

✓ "

(E14) Downgraded RRC_sm_command
causes unresponsiveness

After a downgraded RRC_sm_command, the de-
vice has to start attach procedure again

✓ " " " " " " " "

(I15) Overly restrictive RRC_reconf
For some UE, RRC_reconf works exclusively be-
fore or only after the attach procedure is com-
pleted

✓ " " " "

Previous issues

(E16) Replayed sm_command [32]
Accepts replayed sm_command after security
context has been established

✓ " " " " " " "

(E17) Downgraded RRC_sm_command
acceptance [47]

UE accepts downgraded RRC_sm_command and
bypasses the whole RRC layer security

✓ "

Table 3: Deviations identified by DIKEUE. E- exploitable, I- interoperability issue, EI- both exploitable and an interoperability

issue, O- other deviating behavior, D- deviation from standards, U- underspecification

accepts downgraded RRC_sm_command with the choice of integrity

algorithm EIA0. This makes the implementation vulnerable to Man-

in-the-Middle attacks. The attack was first identified and described

by Rupprecht et al. [47] for a Huawei USB dongle.

9 COMPARISON WITH BASELINE (RQ2)

We compare the effectiveness ofDIKEUEwith the conformance test-

ing framework defined in the 3GPP specification [5] and property-

guided testing by previous approaches [12, 19, 30, 32, 37].

9.1 Comparison with conformance test cases

We first compare the performance of DIKEUE with the 3GPP con-

formance test cases [5] based on two criteria: (i) test coverage; (ii)

identified deviant behavior issues. Since it is not possible to cal-

culate coverage from a black-box UE implementation, such as an

iPhone, we apply DIKEUE to srsUE [6] v20.10.1ś the open-source

implementation by srsLTE [6]. We use the percentage of lines and

functions executed, which are obtained by Gcov [3], as the indi-

cator for code coverage. Since we are considering only the NAS

and RRC layers of the UE implementation, we do not compute the

percentage of lines covered with respect to the total number of

lines and functions in srsUE. Instead, we calculate the percentage of

lines covered within each function and only take into account the

functions that are related to our analysis. Therefore, let Le (f) be

the number of lines executed of function f in the srsUE implemen-

tation and L(f) be the total number of lines of f , we define the line

coverage as:
∑m
i=1 Le (fi)/

∑m
i=1 L(fi) and function coverage as: n/m

where f1, f2, . . . , fm are the functions relevant to NAS and RRC

layer and f1, f2, . . . , fn are functions executed in srsUE. For the

baseline coverage, we identify the 88 test cases related to the RRC

and NAS analysis from the 3GPP conformance test cases [5] and

run them on the srsUE implementation and calculate the line and

function coverage of all the test cases. The rationale is to compare

how DIKEUE covers compared to the standard defined test cases.

The conformance testing has line coverage of 82.58% and func-

tion coverage of 83.4375%, whereas DIKEUE performs significantly

better with 89.47% line coverage and 89.185% function coverage.

We also apply the 88 test cases to the 14 devices. In case the

same conformance test case induces different outputs in different

implementations, we note it as a deviant behavior. Through the

conformance test cases, only 2 deviating behavior can be captured,

compared to the 17 issues automatically identified by DIKEUE.

N
ex
u
s6

H
T
C
1

G
al
ax
y
S6

H
T
C
10

N
ex
u
s6
P

G
al
ax
y
S8
+

P
ix
el
3X

L

H
u
aw

ei
Y
5

H
o
n
o
r8
X

H
u
w
ae
i
P
8

M
iA
1

Ip
h
o
n
e
X
s

U
SB

Fi
b
o
co
m

Nexus6 8 11 0 0 0 0 8 9 12 0 6 2 6
HTC1 7 8 8 8 8 0 10 10 8 8 8 8

GalaxyS6 11 11 11 11 6 12 12 11 5 12 5
HTC 10 0 0 0 8 9 12 0 6 0 6
Nexus6P 0 0 8 9 12 0 6 0 6
GalaxyS8+ 0 8 9 12 0 6 2 6
Pixel 3XL 8 9 12 0 6 0 6
HuwaeiY5 10 10 8 8 8 8
Honor8X 6 10 9 10 9
Huwaei P8 12 10 13 10

MiA1 6 0 6
Iphone Xs 6 0

USB 6
Fibocom

Table 6: Number of unique deviants.

Nexus 6 and Nexus 6P have the same vendor (Qualcomm) and a

similar version of baseband. Interestingly, among the devices from

the same vendor, all the devices behave similarly except HiSilicon.

Particularly, two devices from HiSiliconś Huwaei Honor 8X (Kirin

710) and Huwaei P8lite (Kirin 620) behave quite differently and

DIKEUE identifies 6 unique differences among them. We manually

analyze all the discrepancies and report 17 unique issues in Table 4.

To evaluate the timing performance of FSM equivalence checker,

we calculate the time required for all pairwise deviation checking 5

times and report the average, max, min and standard deviation in

Table 11. On an average, FSM equivalence checker takes 42 minutes

to find all the deviations. The timing cost of querying to the model

checker is shown in Figure 8 in Appendix A.2.

11 RELATED WORK

We divide the related work in two broad categories: (i) Model learn-

ing and protocol state fuzzing; (ii) Cellular network security.

Model learning in different domains. Model learning can be

distinguished between a passive and an active approach. In passive

learning, only existing data is used and based on the data, a model

is constructed. For example, in [18], passive learning techniques

are used on observed network traffic to infer a state machine of

the protocol used by a botnet. This approach has been combined

with the automated learning of message formats in [29], which

then also used the model obtained as a basis for fuzz testing. When

using active automated learning techniques, as done in this paper,

an implementation is actively queried by the learning algorithm

and based on the responses, a model is constructed. State machines

learning has lately become a tool for analyzing the security protocol

implementations of various protocols, such as: TLS [21], DTLS [26],

TCP [25], IoT [53], OpenVPN [20], QUIC [46], and SSH [27]. In the

area of cellular networks, recently Chlosta et al. [15] aimed to apply

model learning to a component of the core network (MME). How-

ever, they only apply to open-source MME networks and do not

experiment with real-world implementations and therefore do not

face a lot of challenges that DIKEUE encounters and solves. Stone

et al. [43] extend state learning to analyze implementations of the

802.11 4-way handshake. In practice, model learning often falls to

non-determinism due to unreliable commuinication medium and re-

quires an prohibitively large number of queries to learn an FSM of a

protocol implementation. Several approaches have been developed

by the research community to deal with these issues. HVLearn [52]

and SFADiff [11] uses cache to avoid the communication cost of

repeated queries and improve performance. Furthermore, majority

voting has been used to deal with non-determinism [26, 43, 44].

Cellular network security. Previous work on 4G LTE implemen-

tation security has either been found by complete manual analy-

sis [16, 23, 28, 38, 40, 41, 48, 51] or semi automated testing [39, 47].

Other than protocol implementations, there is another body of

work related to protocol specifications. Rupprecht et al. [49] showed

missing integrity allows the redirection of malicious websites by an

active attacker. Hussain et. al. used manually constructed models

for verifying certain parts of the 4G [30] and 5G [32] protocols.

12 DISCUSSION

Limitations of DIKEUE. Similar to any testing paradigm, our ap-

proach is incomplete and may result in false negatives due toÐ (1)

not considering all possible message predicates in model learning;

(2) precluding infeasible message sequences from testing; (3) use

of custom termination condition for model learning to balance

scalability and coverage; (4) disconnected FSMs resulting from re-

moving a deviation-inducing transition used for identifying other

noncompliance instances of the same diversity class; and (5) inher-

ent limitation of not being able to detect noncompliance instances

when both implementations under test are noncompliant to stan-

dard but are equivalent. DIKEUE, however, pairwise checks the

equivalence of devices drawn from 14 different UE models belong-

ing to 5 vendors (i.e.,
(

14

2

)

= 91 pairwise comparisons). It is, therefore,

highly unlikely that all devices deviate from the standard in the

same way. If one device deviates from standard in a different way

than the rest, our equivalence checker can identify it.

Property agnostic. DIKEUE is not entirely property-agnostic if

predicates (e.g., is_null_security(m)) of messages are considered as

properties. In this paper, we consider the typical notion of prop-

erty [12, 19, 30, 32] which refers to stateful end-to-end guarantees

of a system. Since DIKEUE does not require any such properties to

identify noncompliance instances between any two implementa-

tions, we consider DIKEUE to be property agnostic.

Applicability on 5G. To the best of our knowledge, there is no

open-source protocol stack for the standalone 5G core network that

can be used to develop a 5G-adapter. Therefore, we leave testing of

5G cellular devices with DIKEUE as future work. Our LTE-specific

insights, although are based on LTE protocol invariants, are equally

applicable to 5G. As an example, similar to LTE, 5G has a multi-layer

design with most of the procedures unchanged from LTE. Thus, the

multi-layer protocol handling, context-checker, and other insights

will largely remain the same when adopting DIKEUE to 5G.

We also discuss parallelizing model learning and automatic ex-

ploit generation from deviant behavior in Appendix A.4.

13 CONCLUSION AND FUTUREWORK

We present DIKEUE which can automatically infer the FSMs of 4G

LTE UE implementations, and identify deviant behaviors among the

implementations in a property-agnostic way. To show the viability,

we applied DIKEUE to 14 COTS devices from 5 vendors. DIKEUE

uncovered 15 deviant behaviors; among them 11 are exploitable.

We have responsibly disclosed the vulnerabilities to the affected

stakeholders and they have acknowledged our findings.

Future Work. In future, we will accommodate session manage-

ment and other data layer protocols and port DIKEUE to 5G. We

will also develop an automated attack strategy generator to provide

end-to-end attack scenarios from the deviating behavior traces.

ACKNOWLEDGEMENTS

This work is supported by NSF grants IIS-2112471, CNS-2006556,

DARPA YFA D19AP00039 and Intel. We thank GSMA and the base-

band vendors and manufacturers for coordinating with us for the

vulnerability disclosure process.

REFERENCES
[1] [n. d.]. DIKEUE. https://github.com/SyNSec-den/DIKEUE.
[2] [n. d.]. Evolved Universal T Radio Re Prot (3GPP TS 36.3 TECHNICAL SPECIFI-

CATION 136 331 V13.0.0 (2016 LTE; l Terrestrial Radio Access (E- Resource Control
(RRC).

[3] [n. d.]. GNU Compilers. Gcov - Using the GNU Compiler Collection (GCC)).
[4] [n. d.]. libimobiledevice A cross-platform protocol library to access iOS devices.

https://github.com/libimobiledevice.
[5] [n. d.]. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved

Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol
conformance specification (3GPP TS 36.523-1).

[6] [n. d.]. srsLTE. https://github.com/srsLTE.
[7] [n. d.]. TS 24.301 Universal Mobile Telecommunications System (UMTS); LTE; 5G;

Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3 (3GPP
TS 24.301 version 15.4.0 Release 15).

[8] [n. d.]. TS 33.401 3GPP System Architecture Evolution (SAE).
[9] [n. d.]. Universal Mobile Telecommunications System (UMTS); LTE; 5G; Non-

Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3 (3GPP TS
24.301 version 15.4.0 Release 15).

[10] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.
Information and Computation 75, 2 (1987), 87 ś 106. https://doi.org/10.1016/0890-
5401(87)90052-6

[11] George Argyros, Ioannis Stais, Suman Jana, Angelos D. Keromytis, and Aggelos
Kiayias. 2016. SFADiff: Automated Evasion Attacks and Fingerprinting Us-
ing Black-Box Differential Automata Learning. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (Vienna, Austria)
(CCS ’16). Association for Computing Machinery, New York, NY, USA, 1690ś1701.
https://doi.org/10.1145/2976749.2978383

[12] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A Formal Analysis of 5G Authentication. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 1383ś1396. https://doi.org/10.1145/3243734.3243846

[13] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2015. A Messy State of the Union: Taming the Composite State
Machines of TLS. In 2015 IEEE Symposium on Security and Privacy. 535ś552.
https://doi.org/10.1109/SP.2015.39

[14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessan-
dro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta.
2014. The nuXmv Symbolic Model Checker. In Computer Aided Verification,
Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham,
334ś342.

[15] Merlin Chlosta, David Rupprecht, and Thorsten Holz. 2021. On the Challenges
of Automata Reconstruction in LTE Networks. In Proceedings of the 14th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (Abu Dhabi,
United Arab Emirates) (WiSec ’21). Association for Computing Machinery, New
York, NY, USA, 164ś174. https://doi.org/10.1145/3448300.3469133

[16] Merlin Chlosta, David Rupprecht, Thorsten Holz, and Christina Pöpper. 2019.
LTE Security Disabled: Misconfiguration in Commercial Networks. In Proceedings
of the 12th Conference on Security and Privacy in Wireless and Mobile Networks
(Miami, Florida) (WiSec ’19). Association for Computing Machinery, New York,
NY, USA, 261ś266. https://doi.org/10.1145/3317549.3324927

[17] T. S. Chow. 1978. Testing Software Design Modeled by Finite-State Machines.
IEEE Transactions on Software Engineering SE-4, 3 (1978), 178ś187. https://doi.
org/10.1109/TSE.1978.231496

[18] P. M. Comparetti, Gilbert Wondracek, C. Krügel, and E. Kirda. 2009. Prospex:
Protocol Specification Extraction. 2009 30th IEEE Symposium on Security and
Privacy (2009), 110ś125.

[19] C. Cremers and Martin Dehnel-Wild. 2019. Component-Based Formal Analysis of
5G-AKA: Channel Assumptions and Session Confusion. In 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019. https://doi.org/10.14722/ndss.2019.23394

[20] L. Daniel, E. Poll, and J. de Ruiter. 2018. Inferring OpenVPN State Machines Using
Protocol State Fuzzing. In 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS PW). 11ś19. https://doi.org/10.1109/EuroSPW.2018.00009

[21] Joeri De Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS Implemen-
tations. In Proceedings of the 24th USENIX Conference on Security Symposium
(Washington, D.C.) (SEC’15). USENIX Association, USA, 193ś206.

[22] Simon Erni, Patrick Leu, Martin Kotuliak, Marc Röschlin, and Srdjan Cap-
kun. 2021. AdaptOver : Adaptive Overshadowing of LTE signals. In
https://arxiv.org/abs/2106.05039. arxiv.

[23] CheolJun Park Insu Yun Yongdae Kim Eunsoo Kim, Dongkwan Kim. 2021.
BASESPEC: Comparative Analysis of Baseband Software and Cellular Specifica-
tions for L3 Protocols. NDSS 2021 (2021). https://doi.org/10.14722/ndss.2021.24365

[24] Robert B. Evans and Alberto Savoia. 2007. Differential Testing: A New Ap-
proach to Change Detection. In The 6th Joint Meeting on European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering: Companion Papers (Dubrovnik, Croatia) (ESEC-FSE com-
panion ’07). Association for Computing Machinery, New York, NY, USA, 549ś552.
https://doi.org/10.1145/1295014.1295038

[25] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016. Combining
Model Learning and Model Checking to Analyze TCP Implementations. In Com-
puter Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer
International Publishing, Cham, 454ś471.

[26] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri de Ruiter, Konstanti-
nos Sagonas, and Juraj Somorovsky. 2020. Analysis of DTLS Implementations
Using Protocol State Fuzzing. In 29th USENIX Security Symposium (USENIX Se-
curity 20). USENIX Association, 2523ś2540. https://www.usenix.org/conference/
usenixsecurity20/presentation/fiterau-brostean

[27] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits Vaan-
drager, and Patrick Verleg. 2017. Model Learning and Model Checking of
SSH Implementations. In Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software (Santa Barbara, CA, USA) (SPIN
2017). Association for Computing Machinery, New York, NY, USA, 142ś151.
https://doi.org/10.1145/3092282.3092289

[28] Grant Hernandez and Kevin R. B. Butler. 2019. Basebads: Automated Security
Analysis of Baseband Firmware: Poster. In Proceedings of the 12th Conference
on Security and Privacy in Wireless and Mobile Networks (Miami, Florida) (WiSec
’19). Association for Computing Machinery, New York, NY, USA, 318ś319. https:
//doi.org/10.1145/3317549.3326310

[29] Yating Hsu, Guoqiang Shu, and David Lee. 2008. A model-based approach
to security flaw detection of network protocol implementations. In 2008 IEEE
International Conference on Network Protocols. 114ś123. https://doi.org/10.1109/
ICNP.2008.4697030

[30] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino.
2018. LTEInspector: A Systematic Approach for Adversarial Testing of 4G
LTE. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Internet Soci-
ety. https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_
02A-3_Hussain_paper.pdf

[31] Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui Li, and Elisa
Bertino. 2019. Privacy Attacks to the 4G and 5G Cellular Paging Protocols
Using Side Channel Information. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society. https://www.ndss-symposium.org/wp-content/uploads/
2019/02/ndss2019_05B-5_Hussain_paper.pdf

[32] Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and
Elisa Bertino. 2019. 5GReasoner: A Property-Directed Security and Privacy
Analysis Framework for 5G Cellular Network Protocol. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (London,
United Kingdom) (CCS ’19). Association for Computing Machinery, New York,
NY, USA, 669ś684. https://doi.org/10.1145/3319535.3354263

[33] Malte Isberner. 2015. Foundations of active automata learning: an algorithmic
perspective. Ph. D. Dissertation.

[34] Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning. In Runtime Verifica-
tion, Borzoo Bonakdarpour and Scott A. Smolka (Eds.). Springer International
Publishing, Cham, 307ś322.

[35] Malte Isberner, Falk Howar, and Bernhard Steffen. 2015. The Open-Source Learn-
Lib. In Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu
(Eds.). Springer International Publishing, Cham, 487ś495.

[36] Imtiaz Karim, Fabrizio Cicala, Syed Rafiul Hussain, Omar Chowdhury, and Elisa
Bertino. 2019. Opening Pandora’s Box through ATFuzzer: Dynamic Analysis
of AT Interface for Android Smartphones. In Proceedings of the 35th Annual
Computer Security Applications Conference (San Juan, Puerto Rico, USA) (ACSAC
’19). Association for Computing Machinery, New York, NY, USA, 529ś543. https:
//doi.org/10.1145/3359789.3359833

[37] Imtiaz Karim, Syed Hussain, and Elisa Bertino. 2021. ProChecker: An Automated
Security and Privacy Analysis Framework for 4G LTE Protocol Implementations.
In Proceedings of the 41st IEEE International Conference on Distributed Computing
Systems, ICDCS 2021.

[38] Hongil Kim, Dongkwan Kim, Minhee Kwon, Hyungseok Han, Yeongjin Jang,
Dongsu Han, Taesoo Kim, and Yongdae Kim. 2015. Breaking and Fixing VoLTE:
Exploiting Hidden Data Channels and Mis-Implementations. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security
(Denver, Colorado, USA) (CCS ’15). Association for Computing Machinery, New

UE acknowledges with a GUTI_reallocation_complete. The tracking area

update procedure is a standalone procedure that occurs either when

the UE detects a new tracking area (TA) or a periodic TA update

timer has expired. The downlink NAS transport procedure can be

used by the network to send an actual SMS message in the NAS

message.

A.1.2 RRC layer procedures. We now briefly discuss the RRC layer

procedures that aremost relevant in the context of our paper (shown

in Figure 7, the RRC layer procedures are shown in blue).

RRC setup. RRC setup procedure is the backdrop of the NAS attach

procedure. The purpose of this procedure is to establish an RRC

connection and to transfer the initial NAS dedicated information

message from the UE to the network.

RRCsecurity activation.RRC layer security is established through

the RRC security activation procedure. The procedure is started

through the RRC_sm_command message from the eNodeB and com-

pleted by the RRC_sm_complete message by the UE.

RRC release. This procedure is used by the network to release the

established radio bearers as well as all radio resources to suspend

the RRC connection.

RRCconnection reconfiguration.The purpose of this procedure

is to modify an RRC connection, e.g., to establish/modify/release

radio bearers. As part of the procedure, dedicated NAS information

may be transferred from the network to the UE. Usually, after this

RRC procedure the UE completes the initial attach. To begin this

procedure, the network sends an RRC_reconf message which the UE

replies with RRC_reconf_complete to complete the procedure.

RRC Connection Re-establishment. A UE in RRC Connected

state, for which security has been activated, may initiate the pro-

cedure in order to continue the RRC connection. The procedure initi-

ates from theUEwith RRC_con_reest_req and completeswith RRC_con_reest,

and RRC_con_reest_complete messages.

A.2 Model checker performance in equivalence
checking

For further analysis, on the timing performance of the FSM equiva-

lence checker, for each output pair, we calculate the time required

for the model checker for repeated queries and take the average of

each round. The results are shown in Figure 8. After each round of

queries, a new invariant is added to the model and the search space

is reduced. In case there are multiple traces for the same input,

and output pair, the model checker goes deeper into FSMs and it

requires much more time. This, in return, contributes to the time

of our FSM equivalence checker.

To evaluate the timing performance of the FSM equivalence

checker, we calculate the time required for all the pairwise deviant

checking 5 times and report the average, max, min, and standard

deviation in Table 11. On an average, it takes our FSM equivalence

checker 42 minutes to find all the deviations. Furthermore, the

timing cost of repeated querying to the model checker is shown in

Figure 8.

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 2 4 6 8 10

T
im

e
 (

se
c
o

n
d

s)

nuXmv Rounds

Figure 8: Time required for each round of nuXmv query

A.3 ACRONYMS
3GPP Third generation partnership project

ADB Android Debug Bridge

C-RNTI Cell Radio Network Temporary Identity

COTS Commercial Off-The-Shelf

EEA EPS Encryption Algorithm

EIA EPS Integrity Algorithm

FSM Finite State Machine

eNodeB Evolved NodeB

EPC Evolved Packet Core

GUTI Globally Unique Temporary Identity

IMSI International Mobile Subscriber Identity

LTE Long Term Evolution

MAC Message Authentication Code

MitM Man-in-the-Middle

NAS Non Access Stratum

OTA Over-The-Air

RNTI Radio Network Temporary Identity

RRC Radio Resource Control

TMSI Temporary Mobile Subscriber Identity

SDR Software Defined Radio

SUL System Under Learning

UE User Equipment

USIM Universal Subscriber Identity Module

A.4 Additional discussion

Parallelization. Parallelizing model learning by distributing differ-

ent membership queries from a learner to different UEs is plausible.

This necessitates complex coordination for maintaining soundness

and efficiency of learning which is, however, challenging when

inconsistencies are detected due to observational nondeterminism

across different instances. In exceptional cases (e.g., a majority of

the UE instances having their timers fire at the same time), In that

case, it will also take a long time to complete the learning because of

the majority voting mechanism culminating in a wrong result. For

this to resolve, learning has to revert back. Restarting the learning

process from the place of the wrongmajority voting result, however,

may end up nullifying the performance gain due to parallelization.

These complex cases require more investigation and thus we leave

it as future work.

Message
Input Symbols
(After irrelevant message pruning)

Input Symbols (After final optimiza-
tion)

Output Symbols (Λ)

NAS
Enable Attach Request enable_attach enable_attach attach_request

Identity Request

identity_request_replay±
identity_request_plain_text
identity_request_plain_header
identity_request_protected*

identity_request_plain_text identity_response

Authentication Request

auth_request_replay
auth_request_plain_text
auth_request_protected
auth_request_plain_header

auth_request_plain_text auth_response, auth_MAC_failure, auth_seq_failure

Security Mode Command

sm_command_replay
sm_command_plain_text
sm_command_plain_header
sm_command_protected
sm_command_null_security

sm_command_replay
sm_command_plain_text
sm_command_plain_header
sm_command_protected
sm_command_null_security

sm_complete, sm_reject

Attach Accept

attach_accept_protected
attach_accept_replay
attach_accept_plain_text
attach_accept_plain_header

attach_accept_protected
attach_accept_plain_text

attach_complete

Enable Tracking Area Update enable_tau
enable_tau

tau_request

Tracking Area Update Accept

tau_accept_replay
tau_accept_plain_text
tau_accept_protected
tau_accept_plain_header

tau_accept_protected
tau_accept_plain_header tau_complete

GUTI Reallocation Command

GUTI_reallocation_replay
GUTI_reallocation_plain_header
GUTI_reallocation_protected
GUTI_reallocation_plain_text

GUTI_reallocation_replay
GUTI_reallocation_protected

GUTI_reallocation_complete

Downlink NAS Transport

DL_NAS_tansport_replay
DL_NAS_transport_plain_text
DL_NAS_transport_plain_header
DL_NAS_transport_protected

DL_NAS_transport_protected UL_NAS_transport

Paging paging paging service_request
Authentication Reject auth_reject auth_reject null_action
Tracking Area Update Reject tau_reject tau_reject null_action

RRC
Enable RRC Connection Request enable_RRC_con enable_RRC_con RRC_con_request

RRC Connection Setup

RRC_connection_setup_replay
RRC_connection_setup_plain_text
RRC_connection_setup_protected
RRC_connection_setup_plain_header

RRC_connection_setup_plain_text
RRC_connection_setup_plain_header

RRC_connection_setup_complete

RRC Security Mode Command

RRC_sm_command_replay
RRC_sm_command_protected
RRC_sm_command_plain_text
RRC_sm_command_plain_header
RRC_sm_command_null_security

RRC_sm_command_replay
RRC_sm_command_plain_text
RRC_sm_command_plain_header
RRC_sm_command_protected
RRC_sm_command_null_security

RRC_sm_failure, RRC_sm_complete

RRC Connection Reconfiguration

RRC_reconf_replay
RRC_reconf_plain_text
RRC_reconf_protected
RRC_reconf_plain_header

RRC_reconf_replay
RRC_reconf_plain_text

RRC_reconf_complete

Enable RRC Reestablishment enable_RRC_reest enable_RRC_reest RRC_con_reest_req
Enable RRC Measurement Report enable_RRC_mea_report enable_RRC_mea_report RRC_mea_report

RRC Connection Reestablishment

RRC_con_reest_replay
RRC_con_reest_plain_text
RRC_con_reest_protected
RRC_con_reest_plain_header

RRC_con_reest_plain_text
RRC_con_reest_protected RRC_con_reest_complete, RRC_con_reest_reject

RRC UE Information Request

RRC_ue_info_req_replay
RRC_ue_info_req_protected
RRC_ue_info_req_plain_text
RRC_ue_info_req_plain_header

RRC_ue_info_req_protected RRC_ue_info_req

RRC Connection Release RRC_release RRC_release null_action

Table 9: List of input symbols and possible output symbols for each of them. From the input symbols from predicates column

only blue color symbols are included in the optimized input alphabet set.

*Protected implies ¬is_plain_header(m)meaning the message is integrity protected and encrypted

± Replay messages are only true for protected messages, plain text messages do not have sequence numbers and replay pro-

tection

Time (min)
Max Min Mean Median Standard deviation
82.51 13.08 41.84 35.975 21.3

Table 10: Performance of FSM equivalence checker.

Deviant behavior to automatic exploitation.DIKEUE automat-

ically provides traces depicting the deviant implementation specific

behavior. This is a concrete evidence of either implementation devi-

ating from the specifications or the standards being underspecified

or containing conflicting specifications. Currently, we manually

construct the attack strategies from these traces, which we plan to

automate in the future.

	Abstract
	1 Introduction
	2 Background
	2.1 Active Automata Learning
	2.2 4G LTE Preliminaries

	3 Design of DIKEUE
	3.1 Threat Model
	3.2 Problem Statement and Approach Skeleton
	3.3 Workflow of DIKEUE
	3.4 Challenges and Insights

	4 FSM inference module
	4.1 Learner
	4.2 Adapter

	5 FSM equivalence checker
	5.1 Reduction to Model Checking
	5.2 Challenge of Obtaining Diverse Deviations
	5.3 Identifying Diverse Deviations

	6 Implementation
	7 Evaluation
	8 Deviations (RQ1)
	8.1 Exploitable deviations
	8.2 Interoperability issues
	8.3 Other deviant behaviors
	8.4 Previous issues

	9 Comparison with Baseline (RQ2)
	9.1 Comparison with conformance test cases
	9.2 Comparison with existing LTE works

	10 Components performance (RQ3)
	10.1 FSM inference module performance
	10.2 FSM equivalence checker performance

	11 Related Work
	12 Discussion
	13 Conclusion and future work
	References
	A Appendix
	A.1 NAS and RRC Layer procedures
	A.2 Model checker performance in equivalence checking
	A.3 ACRONYMS
	A.4 Additional discussion

