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ABSTRACT
The IEEE 802.11 family of standards, better known as WiFi, is a

widely used protocol utilized by billions of users. Previous works on

WiFi formal verification have mostly focused on the four-way hand-

shake and other security aspects. However, recent works have un-

covered severe vulnerabilities in functional aspects of WiFi, which

can cause information leakage for billions of devices. No formal

analysis method exists able to reason on the functional aspects of

theWiFi protocol. In this paper, we take the first steps in addressing

this gap and present an extensive formal analysis of the functional

aspects of the WiFi protocol, more specifically, the fragmentation

and the power-save-mode process. To achieve this, we design a

novel segment-based formal verification process and introduce a

practical threat model (i.e., MAC spoofing) in Tamarin to reason

about the various capabilities of the attacker. To this end, we verify

68 properties extracted from WiFi protocol specification, find 3

vulnerabilities from the verification, verify 3 known attacks, and

discover 2 new issues. These vulnerabilities and issues affect 14

commercial devices out of 17 tested cases, showing the prevalence

and impact of the issues. Apart from this, we show that the pro-

posed countermeasures indeed are sufficient to address the issues.

We hope our results and analysis will help vendors adopt the coun-

termeasures and motivate further research into the verification of

the functional aspects of the WiFi protocol.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; • Net-
works→ Formal specifications.
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1 INTRODUCTION
WiFi is a ubiquitous wireless networking technology that allows

devices to connect to the Internet and connect to each other [28].

It operates based on the 802.11 family of standards, which indi-

cate the specifications [19] and protocol for wireless local area

networks (WLANs). Currently, WiFi protocol has several versions,

802.11n/ac/ax.

Because of its wide use in all application domains, the security of

WiFi communication is critical. One important approach to address

such a requirement is to formally verify the WiFi protocol to detect

vulnerabilities in its design. Formal verification approaches have

been proposed as part of past work [9, 3, 33, 17, 18, 42, 20, 8, 43],

focusing on different wireless communication protocols, such as

LTE [13], 5G [15], and Bluetooth [16]. Cremers et al. [9] verified the

WiFi protocol with a focus on WPA2 handshakes, such as four-way

handshakes and group-key handshakes. They verified the KRACK

attack [38] using Tamarin [27], a cryptographic verifier. However,
their verification scope is only the WiFi handshake, which limited

their detected attacks to KRACK. Recently, vulnerabilities have been

identified [36, 31] in the fragmentation and power save mode (PSM)

components of the WiFi protocol [36, 31]. Such vulnerabilities may

lead to the leakage of user-sensitive information.

Because the WiFi protocol is so widely used, attacks on the WiFi

functional components affect billions of devices. However, to date,

no formal verification approach has been proposed to analyze the

security of theWiFi functional components. Therefore, in this paper,

we address the problem of designing a formal approach to verify

the functional components of the WiFi protocol–concretely, the

fragmentation and PSM functional components of the protocol.

Fragmentation and PSM are both closely related to the frame buffer

mechanism of the WiFi protocol. The reason is that the buffered

units are stored in plain text in the buffer, which may cause severe

vulnerabilities. Thus, we focus on the formal verification of these

two parts in our work as the first steps toward the verification of

the functional components of the WiFi protocol.

The design of a formal approach for the verification of WiFi

functionalities require addressing the following challenges: (C1):
Modelling multi-protocol interactions: The WiFi protocol specifica-

tion [19] has more than 4,000 pages and has complex contents.

Modeling the functional protocols of WiFi also requires consider-

ing the WiFi security protocols, such as RSNA (Robust Security

Network Association). Therefore, the approach must account for

the interaction between the functional components (such as frag-

mentation and PSM) and the security protocols. (C2): Modelling the
MAC spoofing threat model: There is a wide range of attacks [38,
31] against WiFi that leverage MAC spoofing. The current formal
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verification approaches cannot reason about this important WiFi

threat vector.

In this paper, we build a comprehensive Tamarin [27] model

for WiFi protocol, including both fragmentation and PSM. For the

fragmentation, we model the entire process from the sender trans-

mitting a MSDU (MAC Service Data Unit) to the receiver accepting

it, including the case when the MSDU is long and thus must be

fragmented during transmission. In our model for the fragmenta-

tion process, we also include the security encapsulation method of

the WiFi channel. For the PSM, we build a model that represents

the cycle alternating process, which includes the conversion of

the station’s active state and power save state. We also include

in the model the message transmission and buffering during this

conversion process. To address the complex interaction between

the WiFi functional protocols and RSNA security protocols, we

design a novel approach, referred to as the segment-based Tamarin

model, that extends Tamarin based on the notion of segmentation.

Compared to the previous work that divide the Bluetooth protocol

into different linear procedures and model them as modules [42], in

our case, the functional protocol and security protocol interaction

create complex protocol interactions. To this end, we carefully di-

vide the whole model into several segments, where each protocol is

a segment, and then design how these segments interact with each

other. When we need a particular segment in the model, we directly

call the functions of this segment. Our idea is motivated by object-

oriented programming and the concept of encapsulation. We create

several segments as classes and when needed a user can call these

classes to instantiate the object as a formal model. Following the

principle of encapsulation, the internal mechanisms of the segment

are kept private and invocation mechanisms are made public to

achieve interaction with the other protocols. To address the MAC

spoofing threat model challenge, we add a new attack entity in our

Tamarin code to model an attacker with MAC spoofing capabilities.

We design and implement our model with Tamarin, which in-

cludes the fragmentation and PSM components. We verify 68 prop-

erties from the WiFi protocol specification with our model. We

identify 21 properties violation from the verification and then con-

clude that 3 of those are vulnerabilities. From the identified vul-

nerabilities, we propose 2 attacks. We then evaluate the attacks on

17 commercial devices spanning various vendors and WiFi genera-

tions. Notably, 14 devices are found vulnerable, which proves that

most devices are affected by the issues we have identified. We fur-

ther discuss countermeasures to mitigate these issues. Beyond our

findings, 3 existing attacks [36, 32] are detected by our model. Ad-

ditionally, we have developed a patched version model that proves

resistant against these known attacks.

Our paper’s contributions are as follows:

• To the best of our knowledge, we are the first to formally

verify the functional components of the WiFi protocol. More

specifically, we verify the fragmentation and PSM of the pro-

tocol, which have been shown to be vulnerable in previous

works; attacks on these functions can have severe security

and privacy impacts.

• We design and implement a segment-based analysis (inspired

by object-oriented programming and the principle of encap-

sulation) to create the formal model in Tamarin. Furthermore,

we include a new threat model, which expands the verifica-

tion scope and allows us to reason about the various attacker

capabilities and a wide range of properties.

• We verify 68 extracted properties from WiFi protocol speci-

fication. We find 3 vulnerabilities from the verification and

propose 2 new issues. These vulnerabilities and attacks affect

14 commercial devices out of 17 cases, showing the preva-

lence and impact of the issues. Our model also detects 3

existing attacks. We then implement and verify the patched-

version Tamarin model, which proved resistant to existing

and new attacks.

Open-source. Artifacts related to this project’s formal verification

and analysis are open-sourced on Github [12].

2 BACKGROUND
This section provides an overview of the fragmentation, defrag-

mentation, and PSM of the WiFi protocol and a short introduction

to the Tamarin prover.

2.1 Fragmentation and Defragmentation

MSDU

Frame BodyMAC
HDR CRC Frame BodyMAC

HDR CRC Frame BodyMAC
HDR CRC

Fragment 0 Fragment 1 Fragment 2

Figure 1: Outline of the fragmentation process based on the
WiFi protocol specification [19].

Fragmentation, a mechanism introduced with the early 802.11

wireless protocol, was designed to decrease the probability of in-

terference during long-frame transmission. To accomplish this,

fragmentation breaks a long MSDU into smaller fragments for se-

quential transmission, as illustrated in Fig 1. Then MAC header and

CRC (Cyclic Redundancy Check) code are added to the fragment,

transforming the fragment into an MPDU (MAC Protocol Data

Unit). MPDU is the transmission unit in the WiFi channel. Con-

versely, defragmentation is a mechanism that reassembles those

fragments.

Frame 
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Figure 2: The MAC header and details about Frame Control
and Sequence Control. The orange area indicates the header
fields related to fragmentation. The blue area indicates the
header fields related to PSM.
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In the fragmentation mechanism, there are two critical flags in

the packet MAC header (see the 802.11 specifications [19]). These

flags are the More Fragment flag in the Frame Control field and the

Fragment Number field in the Sequence Control area (see Fig 2).

When theMore Fragment flag is set to 0, it indicates that the current
frame is either the last fragment of a set or it is a standalone frame

that has not been fragmented. Conversely, when a More Fragment
flag is set to 1, it indicates that the current frame is part of a larger set,

denoting that more fragments follow. The Fragment Number field is
equally significant in the fragmentation mechanism. It indicates the

serial number of each fragment in a series. When a frame is divided

into multiple fragments, the first fragment is assigned a Fragment
Number equal to 0, the second fragment a Fragment Number equal
to 1, and so forth for all the subsequent fragments. Basically, the 𝑛𝑡ℎ

fragment is assigned a Fragment Number equal to n-1. Because the

Fragment Number comprises 4 bits, the fragment number ranges

from 0 to 15.

In the fragmentation process, one MSDU can be divided into

multiple MPDUs. The receiver’s task is then to reassemble these

MPDUs back into the original MSDU. The Sequence Control and

Frame Control fields are utilized by the receiving station (STA)

to accurately conduct this reassembly. The More Fragment flag
within the Frame Control field serves as an essential indicator

during this process. When an MPDU with a More Fragment flag
of 0 is received, it indicates the end of a fragmented series; the

receiver then proceeds to reassemble all the MPDUs with the same

sequence number. The order of reassembly adheres to the increasing

fragment number order, ensuring that the original MSDUs’ integrity

and structure are maintained.

2.2 Power Save Mode
Power Save Mode (PSM) is a fundamental energy-saving feature of

the 802.11 protocol [30]. For a normal STA, there are two operational

modes, namely active mode and power save (PS) mode. The key

idea behind the energy-saving feature is managing the operational

state of the STA to optimize power usage. When the STA enters

the PS mode, the corresponding downlink data is held or buffered

at the Access Point (AP), instead of being transmitted immediately.

The 802.11 protocol defines the notion of a Bufferable Unit (BU), as

a data unit that can be buffered with a PS mechanism. When the

STA wakes up, it sends a request to ask the AP for the stored data.

In response to the request, the AP forwards the buffered data units

to the STA.

The Power Management subfield and More Data subfield in the

Frame Control Field of the MAC header are related to PSM, as

detailed in Section 9.2.4 of the WiFi protocol official documenta-

tion [19]; they are shown as the blue area in Fig 2. The Power
Management subfield serves as an indicator of an STA’s power man-

agement mode. A value of 1 in this subfield indicates that the STA

will transition into the PS state. Conversely, a value of 0 indicates

that the STA will maintain an active state. The More Data subfield
indicates that additional BUs are stored for that STA at the AP. If

the More Data subfield is set to 1, it indicates that the AP holds at

least one additional BU for that STA.

The entire process of an STA transitioning into PS mode and

subsequently waking up is illustrated in Fig 3. The figure shows

Station WiFi AP

Connected

A frame with Power Management = 1

First BU with More-Data = 1

Second BU with More-Data = 0

Will Sleep Again

AP Has 2 Buffered Units for STA

STA Enter PSM

STA Wake Up

Figure 3: The PSMprocess. It includes the STA entering power
save mode and then waking up.

how the STA transitions to the power save mode and returns to the

active mode. This process has the following steps:

• When the STA wants to change from the active mode to

the PS mode, it informs the AP by completing a successful

frame exchange initiated by the STA. The Power Management
subfield of the frame from STA should be 1 to declare it will

enter PS mode.

• Upon receiving an ACKmessage from the AP, the STA enters

the PS mode. During this period, the AP is required to buffer

any incoming BUs intended for the STA.

• After the STA wakes up, the STA will send a PS-poll message

to the AP asking for a buffered message. As a response, the

AP sends the first buffered message to the STA with theMore
Data field set to 1, indicating that more buffered data remains

to be sent.

• Once the STA receives this initial buffered message, it checks

the value of the More Data field. If the value is equal to 1, it

sends another PS-poll message to request the next buffered

message. As this is the final buffered message, the AP trans-

mits it with the More Data subfield set to 0, indicating the

end of the buffered data series.

2.3 The Tamarin Prover
The Tamarin prover is an advanced tool to facilitate automated, sym-

bolic analysis of security protocols [27]. Tamarin generalizes the

backward search to enable protocol specification by multiset rewrit-

ing rules [11], property specification in a guarded first-logic logic,

and reasoning modulo equational theories. As a result, Tamarin

can handle protocols with complex control flow and loops, complex

security properties, and equational theories. Given these capabil-

ities, we select Tamarin as our tool of choice for modeling the

fragmentation and the PSM components of the WiFi protocol.

To formalize the security protocol with Tamarin, we represent

the protocol as a collection of multiset rewriting rules. Such as:
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[ SenderState (senderID, seqNum, nonce, key),
SenderMessage (message)]
–[ SenderSendFragment (senderID, message, seqNum, nonce)]
->[ Out(<seqNum, nonce, senc(message,key)>)]

This rule specifies that when a sender identified by an ID and

sequence number has a message to transmit, it encrypts the mes-

sage using a symmetric encryption function and sends it out. The

terms SenderState(senderID,seqNum,nonce,key), and SenderMes-
sage(message) are referred to as left-hand facts, representing the

initial state before the rule is applied. Out(<seqNum, nonce, en-
cryptedMsg>) is referred to as the right-hand fact, symbolizing

the resultant state after the rule’s application. The term Sender-
SendFragment(senderID,message,seqNum, nonce) is referred to

as the action fact, indicating the action to be executed. The term

senc is a built-in function in Tamarin for a symmetric encryption

function [4]. Tamarin provides support for defining custom func-

tions, allowing one to specify the semantics of these functions

using equations. We leverage this feature to model the fragmenta-

tion and defragmentation processes, enabling a precise and faithful

representation of these complex aspects of the WiFi protocol.

Once the entire protocol is specified using multiset rules, we can

use first-order logic formulas [2] to represent security properties.

These properties may encompass confidentiality, authentication,

integrity, and more, serving as metrics for verifying the security of

the protocol. For instance, consider the following first-order logic

formula:

All #j msg. ReceiverRecMsg(msg) @j
==>

(Ex #i. (SenderSendMsg(msg) @i) & i<j)

The formula specifies that, for all protocol traces, if the receiver

obtains a message at time j, there should exist a time i at which
the sender sends the message, with time i occurring before j. This
property helps in verifying the integrity of the message, ensuring

the data has not been modified during transmission.

One can also incorporate restrictions in a Tamarin model, which

serve to define specific constraints for the model. For instance:

restriction Equality:
"All x y #i. Eq(x,y) @ i ==> x = y"

This restriction specifies the condition of equality, allowing one

to use Eq(x,y) in the action fact to represent an equation constraint

between two items. This restriction is useful for integrity verifica-

tion, that is, to verify that the transmitted MIC (Message Integrity

Code) is the same as the one calculated MIC on the receiver side.

3 OVERVIEW
In this section, we first discuss the challenges of our analysis

methodology and our approaches to address these challenges. We

then outline our methodology’s workflow, followed by a high-level

description of each workflow step.

3.1 Challenges
In what follows, we discuss the challenges related to the formal

verification of WiFi fragmentation and PSM and the approaches to

addressing them.

Legitimate
Device Access Point

Attacker

Clone MAC address
of legitimate device

Connect with AP

Disconnect previous connection

Figure 4: Overview of MAC spoofing attack.

(C1) Modeling Multi-Protocol Interactions: The Finite State
Machine (FSM) construction and property extraction require a

thorough analysis of the complex WiFi protocol specification [19],

which extends over 4,000 pages. As the fragmentation and PSM

components interact with the security protocol, in our model, we

need to consider the interplay between the RSNA protocols (such

as CCMP and GCMP) and the fragmentation protocol. For instance,

the authentication of a message that occurs either prior to or fol-

lowing the fragmentation of the frame will result in a variety of

security outcomes. For our patched version model, we need the

authentication process both before and after the fragmentation.

This means the authentication of the frame and a series of frag-

ments are all needed. This patched model makes the interaction

complex and bi-directional. As for the PSM part, the model must

represent the interaction between the SA (Security Association)

and the PSM functions. When a STA enters the PS mode, the AP

buffers the packets destined for the device. Hence, the PSM model

must account for how buffered units are protected and transmitted

under the considered security protocol.

To address this challenge, we first carefully analyze these inter-

actions and use a segment-based model. We partition the whole

model into several segments and represent how each segment in-

teracts with each other. For building the fragmentation model, we

need to consider both the fragmentation functional segment, the

security encapsulation (CCMP .etc) segment, and their interactions.

In our implementation, we first design and implement the security

encapsulation segment. When the fragmentation model needs the

messages to be security encapsulated, we can then directly invoke

the functions in the security encapsulation segment. To achieve

these, we use the m4 language[21], which acts as an intermediate

generator of Tamarin code. Detailed information is provided in

Section 4.2.

(C2) Modeling the MAC Spoofing Threat Model: A MAC spoof-

ing attack [14] allows a malicious entity to impersonate a legitimate

node by using a falsified MAC address. The AP cannot concurrently

maintain a connection with more than one device with the same

MAC address. Therefore, when MAC spoofing happens, the con-

nection between the AP and the legitimate device disconnects first.

Then the attacker uses the MAC address of the legitimate device to
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establish a connection with the AP (see Fig 4). Because the manage-

ment and control frame not being protected by the existing security

protocol, the attacker can launchMitM (Man-in-the-Middle) [7] and

DoS (Denial-of-Service) [29] attacks [26]. In addition, the AP relies

on MAC addresses to encode critical information about each device,

such as the security association or the bitmap indicating whether a

device is active or in sleep mode. Consequently, a MAC spoofing

attack can introduce severe issues, particularly related to fragmen-

tation and PSM. Therefore, we need to add the MAC spoofing to

the attacker’s capabilities of the model so that these severe issues

can be detected. In the meanwhile, incorporating MAC spoofing

considerably broadens the scope of our model’s verification.

ModelingMAC spoofing in Tamarin presents a challenge. Tamarin’s

default threat model is the Dolev-Yao model [10], where the built-

in facts Out(message) and In(message) are under the assumption

that the communication channel operates under the Dolev-Yao

model, thereby eliminating the need for user-defined attacker func-

tions. To simulate MAC spoofing, we introduce a new entity—an

attacker—and define the MAC spoofing attacker’s capabilities. Ac-

cording to the workflow shown in Fig 4, we add a new attacker

entity and construct an FSM [24] representing the attacker. We

define the capabilities of the MAC spoofing attacker in our model,

which includes tampering with the security association and frag-

ment queue of the AP. The details are shown in Section 4.1.

WiFi Protocol
Specification

Functional
Finite State

Machine

Add Threat
Model

Extract Security
Properties

Combine and
Generate

Tamarin Code

Security
Vulnerabilities

Verify on Testbed
Got the Attack

Security
Encapsulation

Figure 5: Overview of the workflow. There are three main
phases: (1) model construction (blue arrow); (2) properties
extraction (yellow arrow), and (3) properties and testbed ver-
ification (red arrow). The first phase builds the model from
the protocol specification, and the second phase extracts the
security properties from the protocol specification. The third
phase verifies the extracted properties and tests vulnerabili-
ties on the testbed.

3.2 Workflow
The workflow of our methodology comprises three core phases:

model construction, extraction of security properties, as well as

security properties and testbed verification (see Fig 5).

Model Construction: It comprises four distinct processes: (i) analy-

sis of the specification to derive the FSM, (ii) addition of the security

encapsulation methods, (iii) characterization of the threat model to

define attacker capabilities, and (iv) translation of the derived FSM

model into Tamarin code.

To construct a model of the fragmentation and PSM components,

it is necessary to thoroughly examine the official WiFi protocol

specification documentation [19]. Subsequently, we construct FSMs

for each entity of the model, which is necessary for Tamarin model

construction.

Upon completing the FSMs of each entity, we consider the se-

curity encapsulation method. The functional FSM part determines

when to send a message and what message to send. Before the

message is sent to the channel, the message should be encrypted,

authenticated, and the integrity code should be added to ensure

integrity, which process is called security encapsulation. How the

message is securely encapsulated will determine the security of the

communication process. Our model needs a complex interaction of

functional segments and security segments. This is the key insight

for proposing a segment-based design to construct the model.

Then, we consider the threat model. Within the Tamarin context,

the threat model outlines the capabilities of potential adversaries

in the system. We consider two threat models in our system, the

Dolev-Yao threat model [10] and the MAC spoofing threat model.

Finally, we combine the threat model and FSM from protocol

specification together to translate them into Tamarin [27] code to

facilitate subsequent verification.

Security Properties Extraction: Security properties are specific

assertions or conditions that one aims to verify within the protocol.

The properties can include various security aspects, including se-

crecy, authentication, integrity, and privacy. The extraction process

involves two critical steps: first, security properties are extracted

from the documentation, and subsequently, these properties are

translated into first-order logic within the Tamarin code. This part

is shown as yellow arrows in Fig 5.

Verifying Properties and Testbed Verification: This phase in-

volves verifying the extracted properties and the vulnerabilities

identified by the Tamarin and testing the issues on the testbed.

Following the model construction and property specification from

the specification, Tamarin can be utilized to verify all properties.

While some properties will be verified, others will be falsified. These

property violations can then be concluded as several vulnerabilities.

These vulnerabilities and new attacks generated are then verified

with a WiFi testbed. Furthermore, we test several commercial de-

vices to evaluate the impact. Upon successful testbed verification,

we identify actual attacks.

4 DESIGN
This section details the processes for building the model and identi-

fying the security properties. Details about properties verification

and testbed evaluation are given in Section 5.

4.1 Threat Models
We consider two threat models: the Dolev-Yao model [10] and the

MAC spoofing model, derived from the MAC spoofing attack [26].
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(a) The FSM of fragmentation process
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null
/ ClearStack()

(b) The FSM of defragmentation process

Figure 6: The FSMs related toWiFi fragmentation component. The fragmentation FSM is on the sender side. The defragmentation
FSM is on the receiver side.

Dolev-Yao Model: The Dolev-Yao model is the most commonly

used threat model in security verification. Under this model, adver-

saries possess the capability to overhear, intercept, and generate

any message, with their only constraint being the guarantees of the

used cryptographic techniques. The Dolev-Yao model is the default

threat model in Tamarin [27]. We can use the default Out(message)
and In(message) in Tamarin to represent the sending and receiving

of messages via the channel that adheres to the Dolev-Yao threat

model.

MAC Spoofing Model: A MAC Spoofing attack allows the ad-

versary to impersonate a legitimate node by using a falsified MAC

address. To simulate MAC spoofing, we introduce a new entity–a

MAC spoofing attacker–and define the attacker’s capabilities. The

AP primarily utilizes theMAC address as a unique identifier for each

client device. Subsequently, under the MAC spoofing threat model,

the attackers can alter the information of the impersonated device

stored in AP. The MAC spoofing attacker can thus manipulate the

following stored information:

• the bitmap that indicates whether each device is in active

mode or PSM;

• the buffered units that use the MAC address to indicate the

source device;

• the security association that includes the pairwise key.

Therefore, we utilize Tamarin to implement these capabilities of

attacker to include the MAC spoofing attacker into our model.

4.2 Model Construction
The model construction comprises four main steps: analyzing the

WiFi protocol specification to derive the FSM, combining the secu-

rity encapsulation component, adding the threat model, and trans-

lating the result into Tamarin. Note that we use a segment-based

methodology to address the interaction across WiFi functional and

security components. A high-level view of the interactions between

the functional components, security methods, and threat model is

given in Fig. 7. Because we focus on the fragmentation and PSM

components of WiFi, the functional components include these two

processes. Security encapsulation and decapsulation refer to WiFi

RSNA. In the following, we provide details on fragmentation and

defragmentation model construction, PSM model construction, as

well as security encapsulation and decapsulation.

Functional
Component

Security
Encapsulation

Security
Decapsulation

Functional
Component

Adversary
Channel

Sender Receiver

Figure 7: Model construction structure. WiFi functional com-
ponents (yellow areas) interact with security encapsulation
and decapsulation components (blue areas).

4.2.1 Fragmentation and Defragmentation Model Construction. To
construct the model, the first important step is to examine the WiFi

specification [19] to obtain the FSMs [24] of the fragmentation and

defragmentation parts. Two entities are involved in fragmentation

and defragmentation: the sender, responsible for the fragmentation

process, and the receiver, responsible for reassembling the frag-

ments. We thus formulate two FSMs for the sender and receiver,

respectively.

The FSM representing the fragmentation process at the sender’s

end is shown in Fig. 6a. We examine Section 10.4 MSDU and
MMPDU fragmentation of the WiFi specification for the FSM

design. The fragmentation FSM has four distinct states: Initially

Connected, Fragmentation Processing, Fragmentation Completed, and Time

Exceed. The meaning of each state is shown below.

• Initially Connected: The sender has connected with the re-

ceiver and has some MSDUs ready to send.

• Fragmentation Processing: The MSDU length is longer than the

threshold; the sender needs to separate the frame into several

fragments.

• Fragmentation Completed: TheMSDU length is below the thresh-

old, with no need for fragmentation, or it is the last fragment.
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• Time Exceed: Current MSDU’s transmission time threshold

has been exceeded.

Following the specification, the frame length should not be larger

than dot11FragmentationThreshold, which we refer to as the thresh-

old in this paper. When the sender is at Initially Connected state with

several MSDUs to transmit, whether the fragmentation is needed

depends on the length of the MSDU frame. If the length is fewer

than the threshold, it will directly enter Fragmentation Completed state

and send the message out; if the length is more than the threshold,

it will enter Fragmentation Processing state and separate the frame to

several fragments. Then, the fragmentation process will continue

until the remaining frame length falls below the threshold.

Then, we move to the rules about fragment number. After the
examination of the specification, in our fragmentation FSM, the

fragment number should start at 0 and increment by 1 each time.

Another fragmentation-related variable, the sequence number, is
identical for every frame. As for the More Fragment flag, indicating
the presence of additional fragments for the current frame, all

fragments (except the last one) should have their More Fragment
flag designated as 1 throughout the fragmentation procedure.

Now, moving on to the FSM of the defragmentation process,

shown in Fig. 6b, the FSM is extracted from Section 10.5 MSDU
andMMPDUdefragmentation ofWiFi protocol specification [19].

There are four states in the defragmentation FSM:

• Initially Connected: The receiver has connected with the

sender and listening for messages.

• Reception Processing: The receiver is receiving several frag-

ments with the More Fragment flag equal to 1.

• Reception Completed: The receiver receives the fragment with

the More Fragment flag equal to 0.

• Time Exceed: The timer maintained on the receiver side ex-

ceeds.

Upon receiving an MPDU or fragment with the More Fragment
flag set to 1, meaning more fragments will arrive, the receiver tran-

sitions to the Reception Processing state. In this state, the received

fragments are buffered for subsequent reassembly. When a frag-

ment arrives with the More Fragment flag equal to 0, it indicates

the termination of a fragment series. Consequently, the receiver

transitions to the Reception Completed state. Here, buffered fragments

sharing identical sequence numbers and originating from the same

source MAC address are systematically reassembled based on their

respective fragment numbers. Like the fragmentation FSM, the

defragmentation process has a timing constraint. If a timer for a

specific MSDU or frame exceeds the threshold , the receiver should

discard all buffered fragments and any subsequent fragments be-

longing to the frame.

4.2.2 PSM Model Construction. We start by presenting the FSMs

associated with the PSM. This will be supported with references

from the WiFi protocol specification. We then present some simple

examples using Tamarin code to illustrate our approach.

We follow Section 11.2 Power Management of the WiFi pro-

tocol specification [19] to build the PSM model. In this model, we

consider two identities, STA and AP. Therefore, we build two FSMs

for them, shown in Fig. 8.

An STA can be in one of two power states: active and power save.

In addition, one intermediate state indicates that the STA sends the

entering power save mode message to the AP but hasn’t received

Active
Inter-
mediate

Power
Save

RecMsg(),
MoreData=0
/WillSleep()

RecACK()
/Sleep()

WillWakeUp()
/SendPSPoll()

RecMsg(),
MoreData=1
/StayActive()

null
/SendMsg(),
PwrMgmt=1

(a) The FSM on Station side

STA
Active

STA
Asleep

RecMsg(),
PwrMgmt=1
/ SendACK()

RecPSPoll()
/ SendBuffer(),

DecideMoreData()

MsgForSTA()
/ BufferUnit()

RecPSPoll()
/ SendBuffer(),

DecideMoreData()

(b) The FSM on Access Point side

Figure 8: PSM component include the STA FSM and AP FSM.

the ACK from the AP. Therefore, there are three states in the STA

FSM:

• Active: STA is fully powered.

• Intermediate: The STA wants to sleep and thus sends a mes-

sage to the AP, but has not received the ACK.

• Power Save: STA is not able to transmit or receive and con-

sumes very low power.

According to the specification, when the STA wants to enter a

power save state, it should first send a message with Power Man-
agement (PwrMgmt) flag equals to 1. The state of the STA FSM

will change from Active to Intermediate, and the STA will wait for

the ACK message from the AP. When the STA receives the ACK

message from the AP, it will enter the power save state; in the FSM,

the state will change from Intermediate to Power Save.

When the STA wakes up from power save mode, it signals the

AP about this state change by sending a PS-poll message. This

message also requests buffered messages stored in AP while the

STA is in power savemode. In the context of our FSM, this transition

is represented as a change from the Power Save state to the Active

state. Upon receiving the buffered frame from the AP, the STA

checks the More Data flag. The value of this flag indicates the AP’s

storage status. If the flag is set to 1, it indicates that additional

buffered messages are stored in the AP. Conversely, if the flag is

set to 0, it indicates that no more buffered messages remain in the

AP. Recognizing this, the STA will transition back to its power save

state, starting a new power-saving cycle.

Then we move to AP PSM; there are two states in AP PSM:

• STA Active: the connected STA is active.

• STA Asleep: the connected STA is in power save mode.

When the AP receives the message with Power Management frag
equals to 1, the AP will change the bitmap that saves the power

state of STA from active to power save and send the ACK message
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back to STA. In the AP FSM, the state will change from STA Active

to STA Asleep state.

When the AP is aware that some STA is in power save mode,

the AP will buffer the messages destined for this STA. Meanwhile,

the information on MAC service, such as the source MAC address

and destination MAC address should be maintained. When the

AP receives the PS-poll message from the STA asking for buffered

messages, the AP will send the STA the buffered message encrypted

by current security association information (which includes the

pairwise key). If the message is not the last in the buffer, the More
Data flag should be 1 to indicate there are more messages in the

buffer.

We provide a Tamarin code example showing how to implement

the "AP knows that the STA will enter power save state and sends

the ACK back" in Appendix A.2.

4.2.3 Security Encapsulation and Decapsulation. Only examining

the functional components of the WiFi protocol is not enough

to determine whether the entire protocol is secure or not. The

reason is that the messages are securely encapsulated in normal

transmissions and then sent to the communication channel. The

security encapsulation usually includes encryption and authentica-

tion. Therefore, the security of transmitted messages depends on

the security encapsulation mechanism.

In fragmentation and PSM, security encapsulation is also impor-

tant. For our analysis, we follow the Section 12.5 Robust Security
NetworkAssociation (RSNA) protocol ofWiFi specification [19].

Among these integrity protocols, because TKIP is deprecated and

more secure protocols CCMP and GCMP are recommended [37].

We thus design the security encapsulation and decapsulation model

to represent the CCM Protocol (CCMP) and GCM Protocol (GCMP).

Our model is based on the Section 12.5.3 CCMP and Section
12.5.5 GCMP of the WiFi protocol specification [19].

MAC Header CCMP/GCMP
Header Data MIC

Figure 9: Structure of Security Encapsulated MPDU: the data
and MIC fields (green area) are encrypted during transmis-
sion; the header fields (red area) are not encrypted.

The composition of a security-encapsulated MPDU compromises

several elements: the MAC header, CCMP or GCMP header, data,

and the Message Integrity Code (MIC), as shown in Fig 9. MIC is

to ensure message integrity. The MAC and CCMP/GCMP headers

remain unencrypted. The data and MIC are encrypted to ensure

secrecy. The MAC header includes various fields, such as the MAC

address, sequence number, fragment number, more fragment flag,

and so on. Conversely, the CCMP/GCMP header incorporates fields

including the key ID and packet number. The packet number is

used to protect against replay attack [35]. When we model the

MAC header, we only focus on the related fields and exclude un-

related ones, such as the QoS Control and HT Control fields. The

abstraction simplifies the model and reduces the demanding compu-

tational requirements. Importantly, by retaining all relevant fields,

we ensure that the integrity of our security evaluation is not com-

promised.

Fragmented
MPDU MAC header

Data

Packet Number Increment
Packet

Number MIC

Data

AES
Encryption

Encrypted
MIC/Data

Figure 10: How the encrypted data and encrypted MIC are
generated. The MIC is generated from headers and data.

We now provide details about the security encapsulation process

as shown in Fig 10. For every transmitted MPDU, one must incre-

ment the Packet Number (PN), ensuring the generation of a distinct

PN. Note that, for a consistent temporal key, the PN must remain

unique to preserve security. The MIC’s is generated from the CCM-

P/GCMP header, the MAC header, and the data frame. The MAC

header and PN and data constitute the Additional Authentication

Data (AAD). Subsequently, the MIC is generated from the AAD.

Once the MIC code is derived, both the data and MIC are encrypted

using AES encryption with the temporal pairwise key. While the

standard specification employs CCM or GCM encryption for the

MIC and data, currently, Tamarin does not provide support for CCM

or GCM encryption. Moreover, our model sets cryptography as per-

fect. Our model uses Tamarin’s built-in symmetric encryption and

decryption functions senc and sdec to represent AES encryption.

The simplified Tamarin code to implement the encryption is given

in Appendix A.1. And we also provide the packet number check

details in Appendix A.3.

4.3 Properties Extraction
Our properties are extracted from the WiFi protocol specifica-

tion [19] and the WiFi secure requirements. We now introduce

some of the requirements in the specification, as well as the secu-

rity properties written in the Tamarin code corresponding to the

security requirements.

Section 12.5.3.3.7 CCM originator processing

CCM originator processing provides authentication and integrity

of the frame body and the AAD and data confidentiality of the

frame body.

From the text box before, the message sent under CCMP should

keep the confidentiality, authentication, and integrity of data, as

well as authentication and integrity of AAD (additional authenti-

cation data) generated from the MAC header and CCMP header.

Therefore, we derive several security properties from such a re-

quirement. The following Tamarin code piece is an example of a

rule specifying the frame body confidentiality property.

not(
Ex #i #j msg fragNum seqNum nonce senderID.
SenderSendFragment(senderID,msg,fragNum,seqNum,nonce)
@ #i & K(msg) @ #j )
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This property means that if the Sender sends a fragment msg
with parameters (fragNum, seqNum ..), then there is no situation or

fact K(msg) allowing the attacker to learn the messagemsg content.
Besides the essential security properties, including authentica-

tion, integrity, and confidentiality, we have integrated more general

properties into our model to ensure comprehensive functionality.

The following sentence shows one instance of such a requirement

for PSM: the STA can only enter the power savemode if the message

sent to the AP has the Power Management flag set to 1.

Section 11.2 Power management

To change power management mode, a STA shall inform the AP

by completing a successful frame exchange that is initiated by the

STA.

From the above requirement, we obtain the following property:

All #j apSSID staAddress.
APKnowDoze(apSSID,staAddress) @ #j
==>

(Ex #i. STASendDozeMsg(’1’,staAddress) @ #i & i<j)

In our Tamarin code translation, if the AP recognizes that a

certain STA enters the PSM at time j, then the event STASend-
DozeMsg must have occurred before time j. Meanwhile, the power

management flag should be ’1’.

After properties extraction and translation to Tamarin code, we

get 68 properties in total. More properties examples are shown in

Appendix B. And we also provide a subset of important properties

in Appendix C.

4.4 Patched-version Model
Apart from the model construction from specification, we also im-

plement the patches of identified known attacks and our proposed

new issues. Our model identifies two new vulnerabilities and con-

firms three existing attacks in [36, 31]. Two of these attacks are

related to the fragmentation process, while one targets the PSM.

We implemented the patched model to evaluate its defense against

the identified attacks.

Regarding fragmentation-related attacks, a key vulnerability

arises in the CCMP or GCMP encapsulation process. Here, the in-

tegrity code is appended after fragmentation. Thus, each fragment’s

integrity is guaranteed, but the entire frame is not. To address this,

we introduce an additional integrity check before fragmentation

in the patched model. This ensures that upon reassembly of all

fragments to one frame at the receiver’s end, the entire frame’s

integrity is verified, protecting it from potential modification dur-

ing transmission. The incorporation of whole frame verification

in our model is efficient. Since the original fragmentation process

already includes the integrity check for each fragment, adding an

additional check for the entire frame introduces minimal overhead.

Another vulnerability that can be exploited for fragmentation-

related attacks is that the buffer units are not cleared when the

connection terminates, which is also a vulnerability that can be

exploited by attacks against the PSM. Moreover, the received frag-

ments or messages are decrypted and stored as buffer units in plain

text. To address this, our patched-version model ensures that the

buffer units are cleared once the STA disconnects from the AP.

Another root cause of the attacks is that the sequence number of
the MAC header is not protected, so it can be altered arbitrarily by

an attacker. Therefore, adding the protection of sequence number is
important to defend against these attacks.

5 EVALUATION
In this section, we experimentally assess our system to answer the

four research questions:

• RQ1. Property Violations:Howmany properties are tested

in our Tamarin model? How many property violations are

detected?

• RQ2. New Attacks Discovered: What new attacks are un-

covered by our model?

• RQ3. Impact on Commercial Devices What impact do

our proposed new issues have on commercial off-the-shelf

devices?

• RQ4. Verification of Existing Attacks: Howmany known

attacks are verified by ourmodel? Additionally, how does our

implementing patched model perform against these known

attacks?

5.1 Properties Violation
The properties are extracted from WiFi protocol specification [19]

and verified with Tamarin. We extract and verify 68 properties in

total and got 21 properties violation from them. There are situations

in which multiple property violations correspond to one vulner-

ability. And some property violations are too minor to represent

as a vulnerability. For instance, the property ensuring that an AP

buffers messages only for the STA in sleep mode, along with the

integrity property of the Power Management bit, are both falsified.

The same underlying cause for both cases is the lack of protection

for the Power Management field. Therefore, from the properties

violation, we obtain 3 WiFi protocol design vulnerabilities. The

vulnerabilities are as follows:

• The sequence number and retry field can be altered arbitrarily

during transmission.

• The Power Management field’s lack of protection can lead to

situations where an Access Point (AP) incorrectly assumes a

Station (STA) has entered power save mode despite the STA

being in active mode.

• The unprotectedMore Data field creates a vulnerabilitywherein
a Station (STA) could mistakenly revert to power save mode

before the Access Point (AP) has completed transmitting

buffered units.

To summarize, the vulnerabilities arise from the absence of pro-

tection for specific MAC headers within the security encapsulation

ofWiFi. These fields are not protected or authenticated during trans-

mission; hence, the attacker can manipulate the fields arbitrarily,

which will result in several security issues.

5.2 New Discovered Attacks
From the protocol design vulnerabilities, we report 2 new attacks.

5.2.1 Basic Denial-of-Service Attack. Our formal model verification

reveals that the sequence number and retry fields lack protection,
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allowing attackers to alter them arbitrarily during transmission.

Therefore, we design a DoS attack that makes the receiver ignore

the message sent by the sender. In this scenario, the STA and AP

are both affected, so we just use the sender and receiver to present

them. The DoS attack is illustrated in Fig. 11.

Sender Receiver

Connected

Frame1(SeqNum1)

Attacker

Frame2(SeqNum2)

Receive but Ignore Frame2

Frame2(SeqNum1),
Retry=1

Modify the SeqNum and Retry field

Figure 11: Basic DoS attack. Frame1 with Sequence Number
1 is sent, received, and processed. The Sequence Number of
Frame2 is altered to Sequence Number 1, and the Retry field
is altered to 1. Then, the receiver mistakes Frame2 as the
retransmission of Frame1 and ignores it.

After the connection, the sender starts to send frames to the re-

ceiver. Frame1(SeqNum1) is the first frame with Sequence Number1,
and Frame2(SeqNum2) is the second frame with Sequence Number2.
In the first step, the first frame is received and processed without

issues. In the second step, the attacker modifies the second frame’s

MAC header. The sequence number is altered to match the first

frame’s, and the retry field is set to 1. Since the receiver already

processed a frame with Sequence Number1, it mistakes the attacker-

modified second frame for a retransmission of the first frame.This

attack can compromise data transmission and open avenues for

more sophisticated attacks, potentially leading to severe data loss.

5.2.2 Denial-of-Service Attack against Fragmentation. We now in-

troduce an advanced DoS attack targeting the fragmentation pro-

cess, which is illustrated in Fig 12, building on the basic DoS attack.

In the first step, the sender sends FrameX after the connection.

During the process, the frame is fragmented, sent, and reassembled

by the receiver successfully. In the second step, when the sender

needs to send FrameX+1, the attacker modifies the first fragment

Fragment0 by altering the sequence number from 𝑋 + 1 to 𝑋 and

altering the retry field from 0 to 1, which tricks the receiver into

believing that current fragment is duplicate retransmission of a pre-

viously received fragment. As a result, the reassembly of FrameX+1

fails due to the missing Fragment0 on the receiver side.

In our tests, we discover that even if only one fragment from a

series is missing, the receiver’s defragmentation fails. By modifying

the header field of fragment 0, which is the first fragment and is

present in any fragment series, we can affect any fragmented MAC

MSDU with this method.

This fragmentation-targeted DoS attack has two benefits for the

attacker. First, the attacker only has to modify the header of a single

fragment to disrupt the reassembly, effectively causing the entire

Connected

FrameX{Frag0}

Reassemble to FrameX

FrameX{Fragn}

Send all fragments of FrameX

FrameX+1{Frag0}

FrameX{Frag0}, retry=1

FrameX+1{Fragn}
Ignore this Fragment

Lack first Fragment,
Cannot Reassemble FrameX+1

Fr
am

eX
Fr

am
eX

+1

Sender ReceiverAttacker

Figure 12: Denial-of-Service Attack against Fragmentation.
X denotes the sequence number, and 0 to n denotes the frag-
ment number. The FrameX is successfully fragmented and
reassembled on the receiver side. The Frag0 of FrameX+1 is
modified by the attacker, altering the sequence number and
retry field. Hence, the receiver ignores the Frag0 and cannot
reassemble FrameX+1 successfully.

frame’s transmission to fail. Second, the sender mistakenly believes

that the receiver has successfully gotten the first fragment, eliminat-

ing any retransmission attempts. Given that a fragmented MSDU

only uses immediate acknowledgment, an ACK is sent after each

fragment’s receipt. Furthermore, sequence number is not shown
in the ACK message. If an attacker alters a fragment’s sequence
number, the sender remains believing that the fragment was suc-

cessfully received. Hence, the sender will not try to retransmit that

fragment.

This attack can disrupt the reassembly by only modifying the

header of a single fragment. This attack not only poses a direct

threat to the stability and efficiency of the network but may also

cause multi-vector attacks.

5.3 Impact on Commercial Devices
To evaluate the effects of our newly discovered attacks on commer-

cial devices, we build a testbed based on the WiFi-framework [32]

and examine 17 devices, including laptops, phones, network cards,

and Internet-of-Things (IoT) devices. Our testing devices are from

multiple vendors (such as Qualcomm, MediaTek, Huawei, etc.) and

support from WiFi 4 to WiFi 6 generations.

We employ the Alfa AWUS036ACM network card on XPS 13

Plus laptop with an Intel i7-1260P CPU, 16 GB DDR3 RAM, and

Ubuntu 22.04 system. Devices are assessed using tcpdump [34] and

Android Debug Bridge (ADB) [1], serving as Stations. In this setup,

the AP acts as the sender, while the STA acts as the receiver. 14

commercial devices out of 17 testing cases are vulnerable to our
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proposed new issues. The devices and outcomes are detailed in

Table 3 of Appendix D.

From our tests, the devices using the latest WiFi 6 generation

exhibit low vulnerability. In contrast, the devices using older WiFi

generations are all vulnerable. Therefore, we recommend upgrading

to a newer WiFi version to enhance device security. More details

are discussed in Sec 6.

5.4 Existing Attacks Verification
Our model detects 3 known attacks from prior research [36, 31]. In

addition, we design, implement and validate the patched-version

model of these existing attacks. In the patched-version model, we

enhance security by integrating a whole frame integrity check and

implementing cache-clearing mechanisms. The results show the

effectiveness of the patched-version model. The details are shown

in Table 1.

6 DISCUSSION
Why Choosing Fragmentation and PSM. At first, we system-

atically and exhaustively review the previous works on formal

verification of WiFi protocol. The works include the formal verifi-

cation of key-exchanged handshakes, such as [9], and the formal

verification of Voice over WiFi protocol [25]. However, there is

no work verifying the security of fragmentation and PSM in WiFi

protocol. Therefore, our work aims at filling this void.

Second, attacks on these two parts have been discovered in re-

cent years, which have caused severe impacts such as user infor-

mation leakage. Vanhoef et al. [36] identified weaknesses in the

fragmentation part of WiFi protocol. The weakness arises from the

whole frame is not authenticated, and only a series of fragments

are authenticated separately. Therefore, the researchers came up

with mixed-key attacks which can leak user information. Schepers

et al. [31] discovered vulnerabilities in PSM of WiFi protocol, as

the buffered units are not cleared after disconnection. Also, they

came up with an attack that can leak the user buffer content, which

may lead to information leakage. Because the attacks are severe,

we want to build a Tamarin model that can detect these types of

vulnerabilities.

Ultimately, the fragmentation and PSM components both use

the frame buffer mechanism in WiFi protocol. During the fragmen-

tation process, an MSDU is divided into multiple MPDUs to be sent;

on the receiver side, the MPDUs sent earlier will be decrypted and

buffered. In the PSM mechanism, the AP will buffer the messages

that need to be sent to the sleeping non-AP STA. In addition, the

MAC header fields related to fragmentation and PSM are both not

protected and authenticated, and starting from this point, it will

lead to several weaknesses of these two components. In conclusion,

fragmentation and PSM have two similarities: buffer mechanism

and unprotected MAC header fields. The two components are also

relatively important WiFi functions related to the buffer mecha-

nism and unprotected MAC header. Thus we implement the formal

verification of these two parts in our work.

Analysis of Devices Testing Results. We evaluate 17 devices

spanning WiFi generation 4 to 6, supported by multiple vendors.

As illustrated in Table 3, 14 of these devices were found vulnerable,

proving the wide range and significance of our identified issues.

Upon closer checking of the non-vulnerable devices, we observed

a common fact: they all utilize WiFi 6 and operate on Android 11

or 12. This suggests that the WiFi generation 6 devices are more

robust with respect to the issues we have identified. However, the

presence of vulnerable devices with both WiFi 6 and Android 12

shows that the devices with the new versions can still be attacked.

The devices with Android 10 and WiFi 5 generation, as well as

the earlier generation devices, are all vulnerable. Therefore, it is

necessary to upgrade the WiFi version and the operating version.

Furthermore, our tested laptops, network card, and Internet-of-

Things (IoT) devices are also vulnerable, highlighting the issues’

wide-range impact.

Ethical Consideration & Responsible Disclosure. We have

conducted commercial device testing in a controlled environment,

only affecting our own controlled devices. We only performed

the experiments by sending messages with their constraints. Our

purpose is to evaluate the effectiveness of our proposed new attacks,

not to cause any damage. For the new issues, we have responsibly

disclosed the findings to all the vendors and are cooperating with

them for additional needed information. As the discussed issues

can, at max, cause denial-of-service, the vendors consider them as

having a low-security impact. Nonetheless, some of the vendors

are coordinating further on defenses. We thank the vendors for

looking into the issues and taking the user’s security and privacy

very seriously.

7 RELATEDWORK
Work-related to ours can be classified in two broad categories: (i)

Attacks on WiFi and (ii) Formal verification of protocols.

7.1 Attacks on WiFi
Over the years, the WiFi security protocol has evolved fromWEP to

WPA, thenWPA2, and nowWPA3. Very well-known attacks are the

ones against the WiFi key exchange handshake. KRACK [38, 39] is

one such attack. It exploits nonce reuse to infer the encryption key.

The attack causes a repeat of the third message of the WPA2 four-

way handshake process. Even though WPA3 was then introduced,

it has not addressed all the vulnerabilities of WPA2 [22]. Vanhoef et

al. [40] showed that attackers could make WPA3 Access Points use

weaker encryption by changing the SAE handshake process or even

making devices downgrade to WPA2. Also, Chatzoglou et al. [5]

showed attacks that disrupt WiFi service via DoS on WPA3-SAE,

which could affect many APs.

Beyond attacks on key exchange handshakes of WPA2 or WPA3,

there are also vulnerabilities in other aspects of the WiFi protocol.

The Kr00k [23] attack was found in 2019. The researchers found that

some encrypted traffic could be decrypted without authorization.

This happens when an STA disconnects, forcing the WiFi hardware

chip’s key to reset to zero, which could leak data. Vanhoef et al. [36]

identified weaknesses in the aggregation and fragmentation compo-

nents of the WiFi protocol. These vulnerabilities arise because the

A-MSDU (Aggregation MSDU) header field and sequence number

header field are not adequately protected. By exploiting these weak-

nesses, researchers have proposed mixed-key attacks and cache

poisoning attacks under MitM and BEAST threat models. Schepers

et al. [31] discovered vulnerabilities and attacks against the PSM
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Attacks Description Reference Detected Patched Version Remarks

Mixed key attack Attack can forge frames by mixing

fragments that are encrypted under

different keys.

[36] ✓ Authenticate the entire frame

before it is divided into

fragments.

Our model detects frame integrity falsification

in the fragmentation model with the key

refresh. While the patched-version model

verifies the same integrity property.

Poisoning the

fragment cache

attack

An adversary injects fragments

into memory with MAC spoofing.

[36] ✓ Clear the cache when one

device disconnects from the

current AP.

Our model identifies frame integrity

falsification in the fragmentation model under

MAC spoofing. While the patched-version

model verifies the same integrity model.

Leaking frames

from WiFi queue

The attacker forces an AP to queue

frames, changes the security

association, and leaks the queued

frames.

[31] ✓ Clear the cache when one

device disconnects from the

current AP.

In the PSM model with MAC spoofing, we

found that the secrecy of the queued buffer is

falsified. The same property in the patched

version is verified.

Table 1: The three existing attacks detected by our model, the corresponding patches, as well as the verification results of the
original model and the patched model.

and framing queue components of the WiFi protocol, which can

expose buffers under the MAC spoofing threat model. Such vul-

nerabilities stem from the fact that the queued frames are stored

in plaintext. Schepers et al. have also shown that DoS attacks are

possible by deceiving an AP into believing a client is in sleep mode.

We have observed that components of the WiFi protocol outside

of the RSNA can also lead to serious issues, including the leak-

age of sensitive information. However, past efforts to verify the

WiFi protocol have primarily focused on the authentication process

and key-exchange handshake. They have largely overlooked other

general functional components like fragmentation and PSM. Our

research aims to address this gap by focusing on the fragmentation

and PSM components of the WiFi protocol. Furthermore, though

the previous works on finding attacks in functional components

provide notable results, they do not use any systematic approach: (i)

the attacks are found via manual analysis, which has limitations be-

cause of the protocol complexity; (ii) there is no formal verification

of protocol issues.

7.2 Formal Verification
Several approaches have been proposed to use formal methods

to analyze the security of network protocols. Hussain et al. [18]

proposed 5GReasoner, a systematic methodology combining two

model checkers and a cryptographic verifier, for the formal analy-

sis of the security of the control-plane protocols spanning across

multiple layers of the 5G protocol stack. Basin et al. [3] focused

on 5G Authentication and Key Agreement protocol, conducting a

systematic security verification and suggesting security patches to

fix vulnerabilities found from the analysis. Wang et al. [41] pro-

posed MPInspector, a tool designed to verify the implementation

of Messaging protocols. Shi et al. [33] used Tamarin to verify the

security of the BLE Secure Connection protocol. They relaxed the

perfect cryptography in Tamarin, enabling their framework to dis-

close low-entropy key leakage attacks. Jacomme et al. [20] utilized

SAPIC+ [6] to verify the EDHOC protocol, which is a lightweight

key exchange protocol.

In the area of WiFi verification, Cremers et al. [9] were the first

to verify the WiFi protocol, focusing on the WPA2 four-way hand-

shake, the group-key handshake, and the WNM sleep mode. They

verified the KRACK attack [38] by relaxing the perfect cryptogra-

phy assumption in Tamarin. However, their work did not cover

the fragmentation and power save mode of WiFi, limiting their

verification to the KRACK attack; thus, their approach is not able

to discover other attacks such as FragAttacks [36].

Our work differs from previous work in the area of formal analy-

sis of WiFi protocol in that it is the first to focus on the verification

of more functional elements of the WiFi protocol, such as the frag-

mentation and power-save mode. Moreover, we consider modeling

the MAC spoofing threat model with Tamarin. We incorporate a

model of MAC spoofing threats to expand the range of potential

attacks our system can verify. In addition, we propose the segment-

based methodology to construct the Tamarin model. In the previous

work [42] on Bluetooth formal verification, the authors divide the

protocol flow into different linear procedures and model them sep-

arately as modules, whereas in our case, the functional protocol

interacts with the WiFi security protocol, creating complex pro-

tocol interactions. For example, one frame may be in the process

of authentication, fragmentation, encryption, and integrity code

addition. To resolve this, we propose the segment-based design

where each protocol is a segment interacting with the other seg-

ments. On a high level, our segment modeling captures the complex

multi-protocol interactions compared to the previous work, where

the protocol flow is divided linearly one after the other.

8 CONCLUSION & FUTUREWORK
In our work, we present the formal verification of WiFi functional

components, fragmentation, and Power Save Mode (PSM). We de-

sign a segment-based method to build the complex Tamarin model

to achieve this. Additionally, we extend the scope of verification by

introducing a practical threat model involving MAC spoofing. As

for the results, we verify 68 properties in total, which are extracted

from WiFi protocol specification. We then identify and present 2

new issues of WiFi protocol from the verification findings. Further-

more, we test our proposed new issues on 17 commercial devices,

and 14 devices are vulnerable, showing the wide-range impact of

the issues.

Future work. For future work, we will verify other functional

components of the WiFi protocol, such as the MSDU Aggregation

mechanism and the Block ACK mechanism. We would also de-

velop new verification methods that can verify the complete WiFi

protocol.
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A MODEL CONSTRUCTION TAMARIN CODE
EXAMPLE

A.1 Security Encapsulation and Decapsulation
Code Example

In the following section, we present a simplified piece of the Tamarin

code that models the security encapsulation process. In our com-

prehensive modeling, several details related to the adjustments and

configurations of header fields are also diligently accounted for.

rule SendFragment:
let
encryptedMsg = senc(message,key)
MICcode = MIC(<MACheader,SecurityHeader,message>)
enMICcode = senc(MICcode,key)

in
[ Fr( message),
SenderState(senderID,MACheader,SecurityHeader,key)]
– [ SendFragment(senderID,message,
MACheader,SecurityHeader) ]-> [ Out(<MACheader,
SecurityHeader, encryptedMsg, enMICcode>) ]

The encryptedMsg and enMICcode are encrypted with a key

and Tamarin’s built-in symmetric encryption function senc. The
SecurityHeader means the CCMP or GCMP header is in MPDU

format. We define a MIC function to generate MIC code, which

will be used to verify the message integrity. Sending a message also

follows the format in Figure 9 as Out(<MACheader,SecurityHeader,
encryptedMsg, enMICcode>). The security decapsulation on the

receiver side is the converse process of the security encapsulation,

we put the Tamarin code of decapsulation in Appendix A.1.

The decapsulation process functions as the inverse process of

the security encapsulation procedure. We provide a simplified code

example to illustrate the decapsulation mechanism here. Upon re-

ceipt of a message structured as In(<MACheader,CCMPheader,
encryptedMsg, enMICcode>, the recipient uses its inherent key to

decrypt both the encrypted message and the encrypted MIC. To

accomplish this decryption, we employ Tamarin’s integrated sym-

metric decryption function, sdec(). Subsequent to decryption, the

receiver focuses onMIC calculation using the receivedmessage, rep-

resented as calMIC = MIC(<MACheader,CCMPheader,message>).
The integrity of the header and data is preserved if, and only if, the

computed MIC aligns with the decrypted MIC obtained from the

received message.

rule RecFragment:
let
message = sdec(encryptedMsg,key)
MICcode = sdec(enMICcode,key)
calMIC = MIC(<MACheader,CCMPheader,message>)

in
[ In(<MACheader,CCMPheader, encryptedMsg,
enMICcode>), ReceiverState(receiverID,key)]
–[ Eq(MICcode,calMIC),
RecFragment(senderID,message,
MACheader,CCMPheader) ]->
[ ... ]

A.2 PSM Code Example
Here, we provide a simplified example of how we translate the step:

"AP receives the message with Power Management flag equal to 1,

AP sends the ACK message and stores the doze state of STA".

rule APRecDozeMsg:
let
msg = sdec(encryptMsg, key)
MIC = sdec(encryptMIC, key)
mic = MIC(<staAddress, msg>)
ack = ’ack’
enAck = senc(’ack’, key)

in
[ In(«pwrMgmt,staAddress>, encryptMsg, encryptMIC>),
APState(apSSID,key) ]
— [ Eq(mic,MIC), Eq(pwrMgmt,’1’) ]->
[ APStateKnowDoze(apSSID,key,)
APSaveDoze(apSSID,staAddress), Out(enAck) ]

The right-hand fact In(«pwrMgmt,staAddress>, encryptMsg, en-
cryptMIC>)means that the AP receives the message from STA. And

action Eq(pwrMgmt,’1’) is to verify if the power management field

equals to 1. The right-hand fact APSaveDoze(apSSID ,staAddress)
means that the AP knows the doze state of STA. And Out(enAck)
means that the AP sends the ACK message to STA. In conclusion,

this rule shows that when the AP receives the message which Power
Management field equals to 1 from some STA, it will store the doze

state of the STA and send the ACK message back.

A.3 Packet Number Check
To protect against replay attacks, packet numbers are utilized in

WiFi CCMP and GCMP. Each time the sender transmits a message,

the PN is incremented by one. This ensures that every message

encrypted with the same pairwise key has a unique PN. On the

receiving end, the system checks if the PN of a new message is

greater than the previous one. If this is not the case, the message is

discarded. The code below shows the rule for the packet number-

checking mechanism using Tamarin at the receiver’s end.

[ In(<fragNum,seqNum,PN,encryptedMsg,enMICcode>)

, ReceiverSecurityState(receiverID,rPN,key) ]

–[Eq(PN, rPN+1) ]->

[ Process(fragNum,seqNum,PN,encryptedMsg,enMICcode) ]

In this rule before, PN means packet number. At the receiver

side, the receiver stores the PN of the last previously received

message, denoted as rPN. The receiver will verify that the newly

received PN is equal to the PN of the previous message plus 1 (i.e.,

Eq(PN, rPN+1)). If this condition is true, the message will be further

processed; if not, the message will be discarded.
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B SECURITY PROPERTIES EXAMPLES
Section 10.4 MSDU and MMPDU fragmentation

Once a fragment is transmitted for the first time, its frame body

content and length shall be fixed until it is successfully delivered

to the immediate receiving STA.

This above message reveals that the sent fragment should be

provided integrity, whichmeans that themessage sent by the sender

and the message received by the receiver should remain the same.

We encode this requirement to a Tamarin property below:

All #j msg fragNum seqNum nonce receiverID.
ReceiverRecFrag(receiverID,msg,fragNum,seqNum,nonce) j
==>
(Ex #i senderID fragNum2 seqNum2 nonce2.
(SenderSendFragment(senderID,msg,fragNum2,
seqNum2,nonce2) @i) & i<j)

C IMPORTANT PROPERTIES
We present a subset of important properties in Table 2.

Properties
Integrity of Fragment for Fragmentation

Integrity of Frame for Fragmentation

Integrity of Fragment Number for Fragmentation

Integrity of Sequence Number for Fragmentation

Integrity of Nonce for Fragmentation

Integrity of Power Management Field for PSM

Integrity of STA Address for PSM

Secrecy of Fragment for Fragmentation

Secrecy of Frame for Fragmentation

Secrecy of Nonce for Fragmentation

Secrecy of Key for Fragmentation

STA enter sleep state after receiving ACK

AP stores messages after STA sleeping

The authentication should happen after association for PSM

The AP should send buffers after it stores buffers

Secrecy of Message for PSM

Secrecy of Key for PSM

Table 2: Subset of the Evaluated Properties

D TESTING DEVICES AND RESULTS
Details of the tested devices and whether they are vulnerable to

our attack are detailed in Table 3.
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Device Chipset Vendor WiFi Generation OS Version If Vulnerable

Dell XPS 13 plus Intel WiFi 5 Ubuntu 22.04 ✓

Mi Laptop 15.6 RealTek WiFi 5 Ubuntu 22.04 ✓

TL-WN722N v2 TP-Link WiFi 4 Ubuntu 22.04 ✓

Huawei P8 Lite Huawei WiFi 4 Android 5.0 ✓

HTC One E9PLUS MediaTek WiFi 4 Android 5.0 ✓

LG G3 Qualcomm WiFi 4/5 Android 6.0 ✓

Nexus 6 Qualcomm WiFi 4/5 Android 7.1 ✓

Honor 8X Huawei WiFi 5 Android 8.1 ✓

Huawei Y5 Prime Huawei WiFi 4 Android 8.1 ✓

LG Velvet 5G Qualcomm WiFi 5 Android 10 ✓

OnePlus 7T Qualcomm WiFi 5 Android 10 ✓

Xiaomi 12T MediaTek WiFi 6 Android 12 ✓

OnePlus 8T+ Qualcomm WiFi 6 Android 11 ✗

OnePlus 9 Pro Qualcomm WiFi 6 Android 12 ✗

Motorola Edge 39 Pro Qualcomn WiFi 6 Android 12 ✗

IPhone X Apple WiFi 5 IOS 15.5 ✓

Amazon Smart Plug Unknown WiFi4 Unknown ✓

Table 3: Commercial Devices Test Results.
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